Stochastic mean-field approach to fission observables

Yusuke Tanimura and Denis Lacroix

IPN Orsay

"Fission at FUSTIPEN II: recent observables and their modeling" at GANIL, May 3, 2016

Nuclear fission

Importance

- Energy production
- Synthesis of super heavy elements
- Astrophysical process
- Production of radioactive isotopes

Nuclear fission

Importance

- Energy production
- Synthesis of super heavy elements
- Astrophysical process
- Production of radioactive isotopes

Theoretical challenges

- Phenomenological models in terms of a few macroscopic degrees of freedom (elongation, mass asymmetry,...) have been developed
- Successful fully microscopic models are still under development
- Complicated dynamical process of quantum many-body system
 - Quantal treatments for both single-particle and collective DOFs
 - Dynamical and non-adiabatic effects
 - Different time scales

Microscopic models for fission

1. Static approach

- With energy density functional (EDF) theory (Skyrme, Gogny, RMF)
- Fission paths on the **potential** energy surface
- Adiabatic
- Dynamics is not fully treated

2. Dynamical approach

TDHF

- No need to select collective coordinates (3D)
- Fully non-adiabatic
- Collective d.o.f. are nearly classical
- No spontaneous symmetry breaking

TDGCM

- Quantum treatment of collective degrees of freedom
- Numerical cost rises rapidly with number of coordinates

2. Dynamical approach

TDHF

- No need to select collective coordinates (3D)
- Fully non-adiabatic
- Collective d.o.f. are nearly classical
- No spontaneous symmetry breaking

Our method: S. Ayik, PLB658, 174 (2008)

TDHF → Stochastic mean field (SMF) theory

- No need to select collective coordinates (3D)
- Fully non-adiabatic
- Quantum fluctuations by initialstate sampling
- microscopic and dynamical description of fission

Stochastic mean-field theory

S. Ayik, PLB**658**, 174 (2008)

• Quantum fluctuation at t = 0 is taken into account by random sampling of one-body density matrix $\{\rho^{(n)}\}$

$$\rho^{(n)}(t=0) = \overline{\rho^{(n)}(t=0)} + \delta \rho^{(n)}$$

• Evolution of a quantum wave packet is simulated by an ensemble of classical (TDHF) trajectories

$$i\hbar\dot{\rho}^{(n)} = [h[\rho^{(n)}], \rho^{(n)}]$$

• Expectation values and dispersions of one-body observables

$$\langle Q \rangle \quad \to \quad \overline{Q^{(n)}} = \overline{\mathrm{Tr}[\rho^{(n)}Q]}$$
$$\langle Q^2 \rangle - \langle Q \rangle^2 \quad \to \quad \overline{Q^{(n)2}} - \overline{Q^{(n)}}^2$$

Stochastic mean-field theory

• Quantum fluctuation at t = 0 is taken into account by random sampling of one-body density matrix $\{\rho^{(n)}\}$

$$\rho^{(n)}(t=0) = \overline{\rho^{(n)}(t=0)} + \delta \rho^{(n)}$$

If the initial many-body state is a Slater determinant:

Stochastic mean-field theory

• Quantum fluctuation at t = 0 is taken into account by random sampling of one-body density matrix $\{\rho^{(n)}\}$

$$\rho^{(n)}(t=0) = \overline{\rho^{(n)}(t=0)} + \delta\rho^{(n)}$$

If the initial many-body state is a Slater determinant:

Application to ²⁵⁸Fm

- •SLy4d (+ pure pairing force) with frozen-occupationnumber approx. (FOA)
- •Starting from $Q_2 = 180$ barn
- •Fluctuation in ρ_{ij} within a limited window
- •200 events (11 of which did not fissioned)

Application to ²⁵⁸Fm

- •SLy4d (+ pure pairing force) with frozen-occupationnumber approx. (FOA)
- •Starting from $Q_2 = 180$ barn
- •Fluctuation in ρ_{ii} within a limited window
- •200 events (11 of which did not fissioned)

 \leftarrow TDHF starting from Q = 160 b

Fragment-mass distribution

Total kinetic energy of fragments

TKE and final time

Summary

- Aim: Fully microscopic and dynamical description for fission
- We tested the SMF theory to take into account the fluctuations missing in TDHF
 - fluctuation of ρ_{ij} is introduced at t = 0 by random sampling
 - possible to obtain TKE and fragment-mass distributions
- Fission of ²⁵⁸Fm → asymmetric and elongated fission modes are still missing
 - we should start from more compact shape
 - more fluctuation needed in ρ_{ij} ?

