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Nuclear fission

Importance

— Energy production .

— Synthesis of super heavy elements ... <[
g

— Astrophysical process
— Production of radioactive isotopes

uranium nucleus

two smaller nuclei
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Nuclear fission

Importance £ ¢
— Energy production 4 | W L
— Synthesis of super heavy elements ... - : PR i‘\’
— Astrophysical process e \t

— Production of radioactive isotopes

Theoretical challenges

— Phenomenological models in terms of a few macroscopic degrees of
freedom (elongation, mass asymmetry,... ) have been developed

— Successful fully microscopic models are still under development
— Complicated dynamical process of quantum many-body system
* Quantal treatments for both single-particle and collective DOFs
* Dynamical and non-adiabatic effects

e Different time scales
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Microscopic models for fission

1. Static approach

* With energy density functional (EDF)
theory (Skyrme, Gogny, RMF)

* Fission paths on the potential
energy surface

* Adiabatic




2. Dynamical approach

TDHF TDGCM

* No need to select collective e Quantum treatment of
coordinates (3D) collective degrees of

* Fully non-adiabatic freedom

e Collective d.o.f. are nearly * Numerical cost rises rapidly
classical with number of

* No spontaneous symmetry coordinates
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2. Dynamical approach

Collective phase space

TDHF Po, A
. Ay A,
* No need to select collective <>
: TDHF
coordinates (3D) / t>0
* Fully non-adiabatic A
t=0
* Collective d.o.f. are nearly >q

classical

* No spontaneous symmetry

A €.g. fragment mass distribution
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Our method: s ayik rissss, 174 (2008)

TDHF = Stochastic mean field (SMF) theory

* No need to select collective Pa A
coordinates (3D)

Collective phase space

* Fully non-adiabatic

* Quantum fluctuations by initial- SMF
state sampling S

= microscopic and dynamical
description of fission

A €.g. fragment mass distribution

yield

fragment mass




Stochastic mean-field theory

S. Ayik, PLB658, 174 (2008)

e (QQuantum fluctuation at ¢ = 0 is taken into account
by random sampling of one-body density matrix {p(™}

p™ (t = 0) = pm(t = 0) + 5p™

e Evolution of a quantum wave packet is simulated by an ensemble of clas-
sical (TDHF') trajectories

inp™) = [hlp™], o)

e Expectation values and dispersions of one-body observables
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Stochastic mean-field theory

e (Quantum fluctuation at ¢ = 0 is taken into account
by random sampling of one-body density matrix {p(”)}

p™M (t = 0) = p(W(t = 0) + 5p™

If the initial many-body state is a Slater determinant:
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C Configuration-mixing effect



Stochastic mean-field theory

e (Quantum fluctuation at ¢ = 0 is taken into account
by random sampling of one-body density matrix {p(”)}

P (t=0) = p(t = 0) + p"

If the initial many-body state is a Slater determinant:
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*SLy4d (+ pure pairing force) with frozen-occupation-
number approx. (FOA)

*Starting from Q, = 180 barn

*Fluctuation in p;; within a limited window

200 events (11 of which did not fissioned)
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*SLy4d (+ pure pairing force) with frozen-occupation-
number approx. (FOA)

*Starting from Q, = 180 barn

*Fluctuation in p;; within a limited window

200 events (11 of which did not fissioned)



t=0.00 (fm/c) t=0.00 (fm/c)

< TDHF starting from Q =160 b




relative yield

Fragment-mass distribution

SMF
expt. —— Asymmetric configurations are
@ still missing
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Total kinetic energy of fragments

*Width of distribution is

T reasonably reproduced
\_LITDHF FOA *Peak position is shifted

from TDHF value
*Does not reproduce the
asymmetric TKE distribution
Asymmetric and elongated

%@ configurations are missing?
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TKE and final time
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Summary

Aim: Fully microscopic and dynamical description for fission
We tested the SMF theory to take into account the
fluctuations missing in TDHF

— fluctuation of p; is introduced at t = 0 by random sampling

— possible to obtain TKE and fragment-mass distributions

Fission of 2°Fm = asymmetric and elongated fission modes
are still missing

— we should start from more compact shape
— more fluctuation needed in p;?
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