Is there a crisis in nuclear-matter theory?

FUSTIPEN workshop Caen, 3/14/2016

Washington University in St. Louis

"DOM crowd" Bob Charity Helber Dussan Hossein Mahzoon

Wim Dickhoff

•John Clark 80 arXiv:1512.06793

- Saturation problem of nuclear matter
- Brief history & crises
- Finite nuclei
- Dispersive optical model (DOM) results
- Saturation density and short-range correlations
- What about long-range correlations
- A different nuclear-matter problem as a way out or a real solution!
- Chiral 2N and 3N interactions
- Outlook

Those were the days...

• Precursor meeting

John Clark 80

1978 MBT-1 Trieste conference —> Nuclear matter "crisis"

UPDATE ON THE CRISIS IN NUCLEAR-MATTER THEORY: A SUMMARY OF THE TRIESTE CONFERENCE

Nuclear Physics A328 (1979) 587-595

J. W. CLARK

- LOBT/BB/BBG/2 hole-line substantially above variational result
- "Crisis I" characterized by John
 - Resolved by Ben Day and then conclusively by the Baldo group: 3 hole-line result with gap or continuous choice for auxiliary potential resolves discrepancy
- leads to "Crisis II"
 - Nuclear saturation properties cannot be explained in terms of non relativistic nucleons interacting only by two-body (realistic) forces
- Crisis II "resolved" by many people in many different ways
- Therefore it is **not** resolved as there is no universal agreement concerning the physics explanation

Empirical Mass Formula

Global representation of nuclear masses (Bohr & Mottelson)

$$B = b_{vol}A - b_{surf}A^{2/3} - \frac{1}{2}b_{sym}\frac{(N-Z)^2}{A} - \frac{3}{5}\frac{Z^2e^2}{R_c}$$

- Volume term $b_{vol} = 15.56 \text{ MeV}$
- Surface term
- Symmetry energy
- Coulomb energy
- Pairing term must also be considered

- b_{surf} = 17.23 MeV
- b_{sym} = 46.57 MeV
- $R_c = 1.24 \ A^{1/3} \ fm$

Empirical Mass Formula

Plotted: most stable nucleus for a given A

Central density of nuclei

Multiply charge density at the origin by A/Z

- \Rightarrow Empirical density = 0.16 nucleons / fm³
- \Rightarrow Equivalent to k_F = 1.33 fm⁻¹

Nuclear Matter

N = Z

No Coulomb

A $\Rightarrow \infty$, V $\Rightarrow \infty$ but A/V = ρ fixed

"Two most important numbers in nuclear physics"

$$b_{vol} = 15.56 \text{ MeV}$$
 and $k_F = 1.33 \text{ fm}^{-1}$

BHF (2 hole lines) + 3 hole lines

- Binding energy usually within 10 MeV from empirical volume term in the mass formula even for very strong repulsive cores
- Repulsion always completely cancelled by higher-order terms
- Minimum in density never coincides with empirical value when binding OK -> Coester band

Figure adapted from Marcello Baldo (Catania)

Location of minimum determined by deuteron D-state probability

Results hole-line expansion 2+3

- Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981)
- Important confirmation Baldo et al. PRL81, 1584 (1998)

Observations (perhaps not controversial)

- Variational results and 3-hole-line results more or less in agreement
- Baldo et al. also calculated 3-hole-line terms with continuous choice for auxiliary potential and found that results do not depend on choice of auxiliary potential, furthermore 2-hole-line with continuous choice is already "almost" sufficient!
- Conclusion: convergence appears OK for a given realistic nuclear two-body interaction for the energy per particle
- Other quantities —> not always consistent (Hugenholtz-Van Hove)

- John's Crisis I resolved
- Still nuclear matter saturation problem! —> Crisis II

Possible solutions

- Include three-body interactions: inevitable on account of isobar
 - Simplest diagram: space of nucleons -> 3-body force
 - Inclusion in nuclear matter requires phenomenology to get saturation better
 - Also needed for few-body nuclei; there is some incompatibility
 - There is no clear experimental constraint how much NN and how much NNN
- Include aspects of relativity
 - Dirac-BHF approach: ad hoc adaptation of BHF to nucleon spinors
 - Physical effect: coupling to scalar-isoscalar meson reduced with density
 - Antiparticles? Dirac sea? Three-body correlations?
 - Spin-orbit splitting in nuclei OK (also with 3N interaction)
 - Nucleons less correlated with higher density? (compare liquid ³He)

nuclear matter

Finite nuclei

• What can we learn from finite nuclei

- Exact calculations possible for light nuclei
- Not restricted to NN interactions
- Can include NNN interactions

• But interactions must be local for Monte Carlo results!

Argonne-Urbana effort

Effect of 3N attractive <--> AV18

More recent tuning 3N

Nuclear matter not so clear

Alternative way to get at NNN contribution?

- Go to experiment? But how?
- Employ an idea originally from Claude Mahaux
 - Use dispersion relation for nucleon self-energy
 - Constrain nucleon self-energy by experimental data
 - Initially elastic scattering and levels
- Recent work
 - Include charge density
 - Particle number
 - JLab (e,e'p) results for high-momentum protons
 - Nonlocal potential essential -> PRL112,162503(2014) for ⁴⁰Ca
- Can make a statement about NNN?!

Differential cross sections and analyzing powers

Reaction (p&n) and total (n) cross sections

Critical experimental data

Local version radius correct... Charge density ⁴⁰Ca Non-locality essential PRL 112,162503(2014)

High-momentum nucleons -> JLab can also be described -> E/A

Jefferson Lab data per proton

- Pion/isobar contributions cannot be described
- Rescattering contributes some cross section (Barbieri, Lapikas)
- Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

Or Hen et al.: High-momentum tail in heavy nuclei 20%

Energy of the ground state & NNN

• Energy sum rule (Migdal, Galitskii & Koltun)

$$E/A = \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty dk k^2 \int_{-\infty}^{\varepsilon_F} dE \ ES_{\ell j}(k;E)$$

- Not part of fit because it can only make an exact statement for NN alone
- Result:
 - DOM ----> -7.91 MeV/A T/A ----> 22.64 MeV/A
 - 10% of particles (momenta > 1.4 fm⁻¹) provide $\sim \frac{2}{3}$ of the binding energy!
 - Exp. -8.55 MeV/A
 - Three-body ---> 0.64 MeV/A "attraction" -> 1.28 MeV/A "repulsion"
 - Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18

$$\begin{split} E_0^N &= \langle \Psi_0^N | \, \hat{H} \, | \Psi_0^N \rangle & \text{with three-body interaction W} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\varepsilon_F^-} dE \sum_{\alpha,\beta} \left\{ \langle \alpha | \, T \, | \beta \rangle + E \, \delta_{\alpha,\beta} \right\} \, \operatorname{Im} \, G(\beta,\alpha;E) - \frac{1}{2} \, \langle \Psi_0^N | \, \hat{W} \, | \Psi_0^N \rangle \end{split}$$

Physics of saturation

- How do we determine the saturation density
 - role of SRC
 - role of LRC
 - what are LRC in nuclei and nuclear matter
- · How do we extract the binding energy at saturation
 - Can this be done with a liquid drop model?

Saturation density and SRC

- Saturation density related to nuclear charge density at the origin. Data for ^{208}Pb \Rightarrow A/Z * $\rho_{ch}(0)$ = 0.16 fm $^{-3}$
- Charge at the origin determined by protons in s states
- Occupation of Os and 1s totally dominated by SRC as can be concluded from an analysis of ²⁰⁸Pb(e,e´p) data and theoretical calculations of occupation numbers in nuclei and nuclear matter (NIKHEF-Lapikas).
- Depletion of 2s proton also dominated by SRC:

15% of the total depletion of 25% ($n_{2s} = 0.75$)

Conclusion: Nuclear saturation dominated by SRC

and therefore -> presence of high-momentum components

Elastic electron scattering from ²⁰⁸Pb

B. Frois et al. Phys. Rev. Lett. **38**, 152 (1977)

Saturation density <--> Charge density

- Experimental results & empirical reproduction by DOM
- ⁴⁸Ca result: Hossein Mahzoon (now MSU) to be published

Personal perspective 2003

Based on results from (e,e'p) reactions

- nucleons are dressed (substantially) and this should be included in the description of nuclear matter (depletion, high-momentum components in the ground state, propagation w.r.t. correlated ground state <--> BHF?)
- SRC dominate actual value of saturation density
 - from ²⁰⁸Pb charge density: 0.16 nucleons/fm³
 - determined from s-shell proton occupancy at small radius
 - occupancy determined mostly by SRC
- Earlier result for SCGF of ladders do not include LRC!!

Phys. Rev. Lett. 90, 152501 (2003)

Self-consistent Green's function and SRC (ladders) -> nuclear matter

The Bethe-Goldstone theory described above still differs in principle from the Brueckner theory because the Brueckner theory relies on a self-consistent single-particle potential. In terms of Green's functions, this result can be achieved by replacing $G^0(p)$ with a G(p) that includes self-energy effects associated with Γ . Furthermore, Γ must itself be determined with G and not G^0 . The equations for this self-consistent theory are shown schematically in Fig. 42.4.

Fig. 42.4 Self-con

As they stand, these equations are quite intractable because the frequency dependence of $\Sigma^*(\mathbf{p}, p_0)$ complicates the integral equation for Γ immensely. (This difficulty is sometimes known as *propagation off the energy shell.*) The smap. Procekner-Goldstone theory can be obtained from these equations in a series of approximations. This, we serie consistency is treated only on the average, and we use a frequency-independent self-energy $\Sigma_{sc}^*(\mathbf{p}) \equiv \Sigma^*(\mathbf{p}, \epsilon_{\mathbf{p}}/\hbar)$, obtained by setting $p_0 = \epsilon_{\mathbf{p}}/\hbar$, where $\epsilon_{\mathbf{p}}$ satisfies the self-consistent equation

$$\epsilon_{\mathbf{p}} = \epsilon_{\mathbf{p}}^{0} + \hbar \Sigma^{\star}(\mathbf{p}, \epsilon_{\mathbf{p}}/\hbar) \equiv \epsilon_{\mathbf{p}}^{0} + \hbar \Sigma_{sc}^{\star}(\mathbf{p})$$
(42.13)

In this way, the Green's function is given approximately as

$$G_{sc}(\mathbf{p}, p_0) = \frac{\theta(|\mathbf{p}| - k_F)}{p_0 - \epsilon_{\mathbf{p}}/\hbar + i\eta} + \frac{\theta(k_F - |\mathbf{p}|)}{p_0 - \epsilon_{\mathbf{p}}/\hbar - i\eta}$$
(42.14)

Second, this Green's function is used to evaluate both the proper self-energy [Eq. (42.4)] and the scattering amplitude [Eqs. (42.5) and (42.6)]. We again obtain χ_m by omitting the hole-hole scattering, which is presumed small in the low-density limit. The only effect on the self-consistent wave function is to change the denominator in Eq. (42.6) from $mP_0/\hbar - \frac{1}{2}(\frac{1}{2}\mathbf{P} + \mathbf{q})^2 - \frac{1}{2}(\frac{1}{2}\mathbf{P} - \mathbf{q})^2 + i\eta$

nuclear matter

382

Recent result SCGF & SRC compared to BHF and BBG

PHYSICAL REVIEW C 86, 064001 (2012)

Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials

M. Baldo,¹ A. Polls,² A. Rios,³ H.-J. Schulze,¹ and I. Vidaña⁴

• BBG requires a repulsive NNN at high density to improve density

So why can't we get it right?

• Must be LRC?!

Look at hole-line expansion

• Identify LRC contribution to the energy

Ingredients hole-line expansion

- Wiggle: G-matrix
- \cdot a) + b) = 2 hole-line = BHF

- c) + d) +e) +f) = 3 hole-line
- c) bubble
- d) U insertion for C choice
- e) ring
- f) summed in Bethe-Faddeev

Continuous choice

• PRL 81, 1584 (1998) Baldo et al.

What about long-range correlations in nuclear matter?

- Collective excitations in finite nuclei very different from those in nuclear matter
- Long-range correlations normally associated with small q
- Contribution to the energy like $dq q^2 \Rightarrow$ very small (except for e-gas)
- Contributions of collective excitations to the binding energy of nuclear matter dominated by pion-exchange induced excitations and not small?!?

Pion-exchange channel dominates 3rd order ring

· Decomposition in spin-isospin excitations at normal density

	\$	М	T	Reid	
third order	0	0	0	-0.302	_
	· 1	0	0	0.149	
	1	1	0	0.059	
	0	0	1	0.027	
	1	0	1	-3.492	
	1	1	1	0.540	
sum				-3.019	
fourth order	0	0	0	-0.0 6 0	_
	1	0	0	-0.017	
	1	1	0	-0.012	
	0	0	1	-0.004	
	1	0	1	-0.755	
	1	1	1	-0.317	
sum				-1.166	
total				-4.185	_

Nucl. Phys. A389, 492 (1982)

Inclusion of $\Delta\text{-isobars}$ as 3N- and 4N-force

2N,3N, and 4N from B.D.Day, PRC24,1203(81)

Rings with Δ -isobars :

Nucl. Phys. A389, 492 (1982)

PPNPhys 11, 529 (1983)

 \Rightarrow No sensible convergence with Δ -isobars Must do nuclear saturation without π -collectivity

Pion collectivity: nuclei vs. nuclear matter

- Pion collectivity leads to pion condensation at higher density in nuclear matter (including Δ -isobars) => Migdal ...
- \cdot No such collectivity observed in nuclei \Rightarrow LAMPF / Osaka data
- Momentum conservation in nuclear matter dramatically favors amplification of π-exhange interaction at fixed finite q
 In nuclei the same interaction is sampled

over all momenta Phys. Lett. B146, 1(1984)

$$V_{\pi}(q) = -\frac{f_{\pi}^2}{m_{\pi}^2} \frac{q^2}{m_{\pi}^2 + q^2}$$

Needs further study

 \Rightarrow Exclude collective pionic contributions to nuclear matter binding energy

Two Nuclear Matter Problems

The usual one

- With $\pi\text{-collectivity}$ and only nucleons
- Variational + CBF and three hole-line results OK (for E/A) but not directly relevant for comparison with nuclei!
- Add NNN —> adhoc adjustment

The relevant one?!

- Without π -collectivity
- Treat only SRC
- But at a sophisticated level by using self-consistency
- Understand lack of binding
 - LRC in finite nuclei?
- 3N-forces difficulty $\Rightarrow \pi \dots$

Even with the right NM saturation NOTHING is explained if the nuclear charge density in the interior is too large

LRC in finite nuclei

Remember:

- LRC in infinite nuclear matter —> no counterpart in finite nuclei
- BUT: LRC in finite nuclei —> no counterpart in nuclear matter
- They will contribute some binding!
- How much: nobody has really looked into this

Recent results for chiral interactions Have I changed my mind?

Systematic expansion in chiral perturbation theory

- allows simultaneous construction of 2N and 3N interaction
- implemented with a very soft cut-off (500 MeV for example)
- easy to compress nuclei —> small radii & too much charge at the origin
- NNN large contribution with higher density necessary

Finite nuclei and chiral interactions

PRL 101, 092502 (2008) PHYSICAL REVIEW LETTERS 29 AUGUS

week ending 29 AUGUST 2008

Medium-Mass Nuclei from Chiral Nucleon-Nucleon Interactions

G. Hagen,¹ T. Papenbrock,^{2,1} D. J. Dean,¹ and M. Hjorth-Jensen³

- N3LO only —> Coupled-Cluster method
- missing ~1.2 MeV binding per nucleon for ⁴⁸Ca

Saturation density <--> Charge density

• Experimental results & empirical reproduction by DOM

Finite nuclei and chiral interactions

• Example

PHYSICAL REVIEW C 89, 061301(R) (2014)

Chiral two- and three-nucleon forces along medium-mass isotope chains

V. Somà,^{1,2,3,*} A. Cipollone,⁴ C. Barbieri,^{4,†} P. Navrátil,⁵ and T. Duguet^{3,6,‡}

- SRG evolved N3LO
- +3N induced
- +3N chiral
- + correction ADC(3)
- Ca isotopes
- Overbound by ~40 MeV
- plus other problems like size

Nuclear matter saturation issues

- Old problem...
- Is it solved?
- Don't think so...
- Coupled cluster

PRC **89**, 014319 (2014) Can't do triton and saturation at the same time

- Lattice calculations
 Radius of ¹⁶O
 <r²>^{1/2}=2.3 fm<-> Exp 2.71 fm
 PRL112, 102501 (2014)
- SCGF only "SRC" no regulators

arXiv:1408.0717 PRC90,054322(2014) 3NF --> DD2NF

Finite nuclei and chiral interactions

PHYSICAL REVIEW C 92, 014306 (2015)

Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain

A. Cipollone,^{1,2} C. Barbieri,^{1,*} and P. Navrátil³

"We observe that all these deficiencies might be corrected by having extra short-range repulsion in the NN section of the Hamiltonian."

PHYSICAL REVIEW C 91, 051301(R) (2015)

Accurate nuclear radii and binding energies from a chiral interaction

• Yet another way out? but no high-momentum nucleons...

Saturation of symmetric nuclear matter: outlook

- Nuclear saturation problem
 - We know a lot ...
 - We can't get it right ...
 - Why not?
- Forces & methods
 - Chiral interactions + 3NF
 - Underbinds in SCGF (SRC only)
 - Coupled cluster: triton <-> nuclear matter cannot be reconciled
 - Comments
 - Not enough high-momentum content (JLab)
 —> chiral NN interactions too soft
 - LRC (mainly pionic) contribute to energy
 - pion physics missing (NN static only???)
 - interior density of heavier nuclei too high
 <-> saturation problem
 - empirical NNN in ⁴⁰Ca ~1.28 MeV/A -> PRL 112, 162503 (2014)

- What to do?
 - Make chiral interactions consistent with JLab data (a little harder) —> good for finite nuclei as well
 - Continue to develop the techniques
 to deal with such a harder
 interaction (to be done for nuclei)
 - Revisit the formulation of the nuclear matter problem
 - Why?
 - Pion-exchange in matter ≠ pionexchange in a finite system
 - Liquid drop notion only good for very short-range physics
 - LRC normally small $q \rightarrow$ no energy
 - Nuclear matter pions —> finite q —> increasing binding with density —> messes up saturation
 - see PRL90, 152501 (2003)
 - LRC in nuclei —> binding? how much? nuclear matter