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Those were the days…
• Precursor meeting
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John Clark 80
• 1978 MBT-1 Trieste conference —> Nuclear matter “crisis” 

– LOBT/BB/BBG/2 hole-line substantially above variational result 

– “Crisis I” characterized by John 

• Resolved by Ben Day and then conclusively by the Baldo group: 3 hole-line result 
with gap or continuous choice for auxiliary potential resolves discrepancy  

– leads to “Crisis II” 

• Nuclear saturation properties cannot be explained in terms of non relativistic 
nucleons interacting only by two-body (realistic) forces 

– Crisis II “resolved” by many people in many different ways 

– Therefore it is not resolved as there is no universal agreement concerning 
the physics explanation



nuclear matter

Empirical Mass Formula 
 Global representation of nuclear masses (Bohr & Mottelson)

• Volume term  bvol  = 15.56 MeV 

• Surface term  bsurf = 17.23 MeV 

• Symmetry energy  bsym = 46.57 MeV  

• Coulomb energy  Rc   = 1.24 A1/3 fm 

• Pairing term must also be considered
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Empirical Mass Formula

Plotted: most stable nucleus for a given A
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Central density of nuclei
Multiply charge density at the origin by A/Z 
⇒  Empirical density = 0.16 nucleons / fm3 

⇒  Equivalent to kF = 1.33 fm-1

Nuclear Matter
N = Z 
No Coulomb 

A ⇒∞, V ⇒∞ but A/V = ρ  fixed 

“Two most important numbers in nuclear physics”

bvol  = 15.56 MeV and kF = 1.33 fm-1
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BHF (2 hole lines) + 3 hole lines
• Binding energy usually 

within 10 MeV from 
empirical volume term in 
the mass formula even 
for very strong repulsive 
cores 

• Repulsion always 
completely cancelled by 
higher-order terms 

• Minimum in density never 
coincides with empirical 
value when binding OK -> 
Coester band Location of minimum determined  

by deuteron D-state probability

Figure adapted from Marcello Baldo (Catania)
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Results hole-line expansion 2+3
• Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981) 

• Important confirmation Baldo et al. PRL81, 1584 (1998)
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Observations (perhaps not controversial)
• Variational results and 3-hole-line results more or less in 

agreement 

• Baldo et al. also calculated 3-hole-line terms with continuous 
choice for auxiliary potential and found that results do not depend 
on choice of auxiliary potential, furthermore 2-hole-line with 
continuous choice is already “almost” sufficient! 

• Conclusion: convergence appears OK for a given realistic nuclear 
two-body interaction for the energy per particle 

• Other quantities —> not always consistent (Hugenholtz-Van Hove) 

• John’s Crisis I resolved 

• Still nuclear matter saturation problem! —> Crisis II
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Possible solutions
• Include three-body interactions: inevitable on account of isobar 

– Simplest diagram:                          space of nucleons -> 3-body force 

– Inclusion in nuclear matter requires phenomenology to get saturation better  

– Also needed for few-body nuclei; there is some incompatibility 

– There is no clear experimental constraint how much NN and how much NNN 

• Include aspects of relativity 

– Dirac-BHF approach: ad hoc adaptation of BHF to nucleon spinors 

– Physical effect: coupling to scalar-isoscalar meson reduced with density 

– Antiparticles? Dirac sea? Three-body correlations? 

– Spin-orbit splitting in nuclei OK (also with 3N interaction) 

– Nucleons less correlated with higher density? (compare liquid 3He)
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Finite nuclei

• What can we learn from finite nuclei 

• Exact calculations possible for light nuclei 

• Not restricted to NN interactions 

• Can include NNN interactions 

• But interactions must be local for Monte Carlo results! 

• Argonne-Urbana effort
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Effect of 3N attractive <—> AV18
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More recent tuning 3N

Nuclear matter not so clear



nuclear matter

Alternative way to get at NNN contribution?
• Go to experiment? But how? 

• Employ an idea originally from Claude Mahaux 
– Use dispersion relation for nucleon self-energy 

– Constrain nucleon self-energy by experimental data 

– Initially elastic scattering and levels 

• Recent work  
– Include charge density 

– Particle number 

– JLab (e,e’p) results for high-momentum protons 

– Nonlocal potential essential —> PRL112,162503(2014) for 40Ca 

• Can make a statement about NNN?!
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Differential cross sections and analyzing powers
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Reaction (p&n) and total (n) cross sections
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Local version                   Charge density 40Ca 
radius correct…              Non-locality essential 
PRC82,054306(2010)                   PRL PRL 112,162503(2014) 

High-momentum nucleons —> JLab can also be described —> E/A
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Critical experimental data
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Jefferson Lab data per proton
• Pion/isobar contributions cannot be described 

• Rescattering contributes some cross section (Barbieri, Lapikas) 
•  Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al. 

• ~10% tail 

• Or Hen et al.: High-momentum tail in heavy nuclei 20% 
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Energy of the ground state & NNN
• Energy sum rule (Migdal, Galitskii & Koltun) 

• Not part of fit because it can only make an exact statement for NN alone 

• Result:  
– DOM ---> -7.91 MeV/A              T/A ---> 22.64 MeV/A 

– 10% of particles (momenta > 1.4 fm-1) provide ~⅔ of the binding energy! 

– Exp.         -8.55 MeV/A 

– Three-body ---> 0.64 MeV/A “attraction” —> 1.28 MeV/A “repulsion” 

– Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18
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Physics of saturation

• How do we determine the saturation density 
– role of SRC 

– role of LRC 

– what are LRC in nuclei and nuclear matter 

• How do we extract the binding energy at saturation 
– Can this be done with a liquid drop model?
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Saturation density and SRC
• Saturation density related to nuclear charge density at the origin. Data for 208Pb 

⇒ A/Z *ρch(0) = 0.16 fm-3   

• Charge at the origin determined by protons in s states 

• Occupation of 0s and 1s totally dominated by SRC as can be concluded from an 
analysis of 208Pb(e,e´p) data and theoretical calculations of occupation numbers 
in nuclei and nuclear matter (NIKHEF-Lapikas). 

• Depletion of 2s proton also dominated by SRC:  

      15% of the total depletion of 25%  (n2s = 0.75) 

• Conclusion: Nuclear saturation dominated by SRC 

         and therefore —> presence of high-momentum components
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Elastic  
electron 

scattering 
from 208Pb

B. Frois et al. 

Phys. Rev. Lett. 38, 152 (1977)

Mean field

Experiment
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Saturation density <—> Charge density
• Experimental results & empirical reproduction by DOM 

• 48Ca result: Hossein Mahzoon (now MSU) to be published
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Personal perspective 2003

       Based on results from (e,e’p) reactions  

- nucleons are dressed (substantially) and this should be included in the 
description of nuclear matter (depletion, high-momentum components in the 
ground state, propagation w.r.t. correlated ground state <--> BHF?) 

- SRC dominate actual value of saturation density 

• from 208Pb charge density: 0.16 nucleons/fm3 

• determined from s-shell proton occupancy at small radius 

• occupancy determined mostly by SRC  

- Earlier result for SCGF of ladders do not include LRC!!

 Phys. Rev. Lett. 90, 152501 (2003)



Single-particle Green´s function 
Dyson equation:  

                                     spectral function ~ 
Self-energy                               Γ-matrix

nuclear matter

Self-consistent Green´s function and SRC (ladders) -> nuclear matter

• Pairing instability possible 

• Finite temperature calculation can avoid this 

• T=0 extrapolation of normal self-energy OK

G
G = G(0) + G(0)⌃ G

G(k,E) =
1

E � "k � ⌃(k,E) Im G(k,E)

• Rios 

• Polls 

• Carbone (NNN)
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Fetter & Walecka
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Recent result SCGF & SRC  compared to BHF and BBG

• BBG requires a repulsive NNN at high density to improve density



nuclear matter

So why can’t we get it right?

• Must be LRC?! 

• Look at hole-line expansion 

• Identify LRC contribution to the energy
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Ingredients hole-line expansion
• Wiggle: G-matrix 

• a) + b) = 2 hole-line = BHF 

• c) + d) +e) +f) = 3 hole-line 

• c) bubble 

• d) U insertion for C choice 

• e) ring 

• f) summed in Bethe-Faddeev
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Continuous choice
• PRL 81, 1584 (1998) Baldo et al.
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What about long-range correlations 
in nuclear matter?

• Collective excitations in finite nuclei very different  
  from those in nuclear matter 

• Long-range correlations normally associated with small q 

• Contribution to the energy like dq q2 ⇒ very small (except for e-gas) 

• Contributions of collective excitations to the binding energy of 
  nuclear matter dominated by pion-exchange induced excitations and not 
  small?!?
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Pion-exchange channel dominates 3rd order ring
• Decomposition in spin-isospin excitations at normal density

Nucl. Phys. A389, 492 (1982)
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Inclusion of Δ-isobars as 3N- and 4N-force

⇒ No sensible convergence with Δ-isobars 
Must do nuclear saturation without π-collectivity  

Rings with Δ-isobars : 

2N,3N, and 4N from
B.D.Day, PRC24,1203(81)

Nucl. Phys. A389, 492 (1982)

PPNPhys 11, 529 (1983)
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Pion collectivity: nuclei vs. nuclear matter

Vπ (q) = −
fπ
2

mπ
2

q2

mπ
2 + q2

• Pion collectivity leads to pion condensation at higher density in  

   nuclear matter (including Δ-isobars) => Migdal ... 

• No such collectivity observed in nuclei ⇒ LAMPF / Osaka data 

• Momentum conservation in nuclear   

  matter dramatically favors amplification 

  of π-exhange interaction at fixed finite q 

• In nuclei the same interaction is sampled  

  over all momenta  Phys. Lett. B146, 1(1984) Needs further study

⇒ Exclude collective pionic contributions to nuclear matter binding energy
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Two Nuclear Matter Problems

• With π-collectivity and only 
nucleons 

• Variational + CBF and     
three hole-line results OK 
(for E/A) but not directly 
relevant for comparison with 
nuclei! 

• Add NNN —> adhoc 
adjustment

• Without π-collectivity  
• Treat only SRC 
• But at a sophisticated level 

by using self-consistency 
• Understand lack of binding 

• LRC in finite nuclei? 
• 3N-forces difficulty ⇒ π ...

The usual one The relevant one?!

Even with the right NM saturation NOTHING is explained 
if the nuclear charge density in the interior is too large
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LRC in finite nuclei

Remember:  
– LRC in infinite nuclear matter —> no counterpart in finite nuclei 

– BUT: LRC in finite nuclei —> no counterpart in nuclear matter 

– They will contribute some binding! 

– How much: nobody has really looked into this
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Recent results for chiral interactions 
Have I changed my mind?

      Systematic expansion in chiral perturbation theory 
– allows simultaneous construction of 2N and 3N interaction 

– implemented with a very soft cut-off (500 MeV for example) 

– easy to compress nuclei —> small radii & too much charge at the origin 

– NNN large contribution with higher density necessary  

        Carbone et al 
        PRC90,054322(2014)
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Finite nuclei and chiral interactions

• N3LO only —> Coupled-Cluster method  

• missing ~1.2 MeV binding per nucleon for 48Ca
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Saturation density <—> Charge density
• Experimental results & empirical reproduction by DOM
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Finite nuclei and chiral interactions
• Example 

• SRG evolved N3LO  

• +3N induced 

• +3N chiral 

• + correction ADC(3) 

• Ca isotopes 

• Overbound by ~40 MeV 

• plus other problems like size
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Nuclear matter saturation issues
• Old problem… 

• Is it solved? 

• Don’t think so… 

• Coupled cluster 

PRC 89, 014319 (2014) 
Can’t do triton and saturation at the same time 

• Lattice calculations 
Radius of 16O 
<r2>1/2=2.3 fm<—> Exp 2.71 fm 
PRL112, 102501 (2014) 

• SCGF only “SRC” no regulators 

arXiv:1408.0717 PRC90,054322(2014) 
3NF —> DD2NF
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Finite nuclei and chiral interactions

“We observe that all these deficiencies might be corrected by having extra short-range repulsion in the NN
 section of the Hamiltonian.”

• Yet another way out? but no high-momentum nucleons…

Ekström et al.
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Saturation of symmetric nuclear matter: outlook
• Nuclear saturation problem 

– We know a lot … 

– We can’t get it right … 

– Why not? 

• Forces & methods 
– Chiral interactions + 3NF 

• Underbinds in SCGF (SRC only)  

• Coupled cluster: triton <-> nuclear matter 
cannot be reconciled 

– Comments 
• Not enough high-momentum content (JLab) 

—> chiral NN interactions too soft 

• LRC (mainly pionic) contribute to energy 

• pion physics missing (NN static only???) 

• interior density of heavier nuclei too high  
<—> saturation problem 

• empirical NNN in 40Ca ~1.28 MeV/A —> PRL 
112, 162503 (2014) 

• What to do? 
– Make chiral interactions consistent 

with JLab data (a little harder) —> 
good for finite nuclei as well 

– Continue to develop the techniques 
to deal with such a harder 
interaction (to be done for nuclei) 

– Revisit the formulation of the 
nuclear matter problem 

• Why? 
– Pion-exchange in matter ≠ pion-

exchange in a finite system 

– Liquid drop notion only good for very 
short-range physics 

– LRC normally small q —> no energy 

– Nuclear matter pions —> finite q —> 
increasing binding with density —> 
messes up saturation   

– see PRL90, 152501 (2003) 

– LRC in nuclei —> binding? how much?


