Study of ΛN interaction via the A=4 mirror Λ hypernuclei: ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$

Department of Physics Tohoku University

Takeshi Koike

TORIJIN-EFES- FJNSP LIA * Joint Workshop on:

"Next Generation Detector System for Nuclear Physics with RI beams"

GANIL, February 14-15, 2008

February, 15

Gamma-ray arrays

- 9:00 EXOGAM2, the upgrade of EXOGAM: E Clement+M Tripon (GANIL)
- 9:30 Digital Signal Processing for Germanium Detector: H Fukuchi (RIKEN)
- 10:00 AGATA: C Theisen (SPhN)
- 10:30 Hyper Ball: T Koike (Tohoku)
- 11:30 New crystals: C. Dathy (Saint Gobain)
- 12:00 GASPARD: D Beaumel (IPNO)
- 12:30 PARIS : J.P. Wieleczko (GANIL)

Organizers:

Gilles de France (GANIL) Patricia Roussel-Chomaz (GANIL) Susumu Shimoura (CNS, University of Tokyo) Tohru Motobayashi (RIKEN)

Our story and data: J. Radiol. Prot. 34 (2014) 675

OPEN ACCESS

IOP Publishing | Society for Radiological Protection

Journal of Radiological Protection

J. Radiol. Prot. 34 (2014) 675-698

doi:10.1088/0952-4746/34/3/675

Selected as highlights of 2014

Comprehensive data on ionising radiation from Fukushima Daiichi nuclear power plant in the town of Miharu, Fukushima prefecture: The Misho Project

> T Koike¹, Y Suzuki², S Genyu³, I Kobayashi⁴, H Komori⁴, H Otsu⁵, H Sakuma⁶, K Sakuma⁶, E M Sarausad^{7,8}, K Shimada⁹, T Shinozuka⁹, H Tamura¹, K Tsukada¹, M Ukai¹, T O Yamamoto¹ and for The Misho Project²

Contents

Introduction

- \bullet what we know about ΛN interaction
- Experimental confirmation of charge symmetry breaking in ΛN interaction
 - A=4 mirror Λ hypernuclei
- Theoretical studies
- Summary

Baryon-Baryon interaction

Prog. Nucl. Part. Phys. 58 (2007) 439.

200

pp

100

200

T_{lab} (MeV)

(b)

400

fss2 -----FSS -----

exp

300

Σ⁻ p elastic (d)

 $\Sigma^- p \rightarrow \Sigma^0 n(f)$

 $\Sigma^- p \rightarrow \Lambda n$ (h)

800

1000

fss2

exp

fss2

FSS

exp

\$\$2

FSS

exp

600

plab (MeV/c)

FSS -----

A Hypernuclear chart

Courtesy of H. Tamura

Missing mass spectroscopy

Effective two-body AN interaction

core

 $J=J_c-1/2$ core

spin-spin Δ =0.43 or 0.33 MeV A spin-orbit: $S_A = -0.02 \text{ MeV}$ N spin-orbit $S_N = -0.4$ Tensor *T* =0.03

D. J. Millener, NPA 881 (2012) 298.

	J_u^{π}	J_l^{π}	$\Lambda \Sigma$	Δ	S_A	S_N	Т	ΔE^{th}	ΔE^{exp}
$^{7}_{\Lambda}$ Li	3/2+	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^{7}_{\Lambda}$ Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{9}_{\Lambda}$ Be	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\text{B}$	7/2+	5/2+	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}\text{B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2-	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$3/2^+_2$	$1/2^+_2$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}$ O	1-	0^{-}	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}\mathrm{O}$	2-	1^{-}_{2}	92	207	-21	1	-41	248	224

Small AN spin-orbit force

AN interaction

No one pion exchange because of isospin conservation $\rightarrow \Lambda N$ interaction is medium to short in range

ΛN interaction: ΛN**-ΣN coupling**

Summary on AN interaction studies

- Experimentally most well studied among YN interaction
- Spin dependent term determined for p-shell by γ -ray spectroscopy
- Independent particle picture is valid for also Λ

• $U_{\Lambda}/U_{N} \sim 2/3$

- Small spin-orbit force (by an order of magnitude)
 - Magic number for $\Lambda \rightarrow HO$ shell gap
- One pion exchange forbidden (medium to short range nuclear force)
 - \bullet Zero isospin of Λ
- AN- Σ N coupling is stronger than the nuclear counter part
 - m_{Σ} - $m_{\Lambda} \approx 75 \text{ MeV}$

Large charge symmetry breaking (CSB) ?

Experimental breakthroughs in 2015

Experimental confirmation of large charge symmetry breaking (CSB) in AN interaction

How much energy (B_{Λ}) the system will gain by adding Λ in A=3 nuclear system?

Λ has no charge!!

- ΔB_{Λ} : measure of pure (no Coulomb contribution) CSB effect of ΛN interaction.
- ΔB_{Λ} would be the same or much smaller than NN
- A few keV sensitivity via γ-ray spectroscopy with bound excited states.

naïve expectation

Experimental breakthroughs

ട്ട്

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of ${}^{4}_{\Lambda}$ He

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸
A. Feliciello,⁵ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹
S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹
S. Kinbara,¹² T. Koike,¹ J. Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰
M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹
S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹
Y. Yamamoto,¹ and S. B. Yang¹³

(J-PARC E13 Collaboration)

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan
 ²Dipartimento di Scienza Applicate e Tecnologica, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy
 ³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy
 ⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan
 ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
 ⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy
 ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan
 ⁸Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia
 ⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan
 ¹⁰Department of Physics, Korea University, Seoul 136-713, Korea
 ¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan
 ¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
 ¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan (Received 12 August 2015; published 24 November 2015)

J-PARC

(Japan Proton Accelerator Research Complex)

Hadron Experimental Facility

γ -ray spectroscopy of ${}^{4}_{\Lambda}$ He (J-PARC E13)

Reaction: ${}^{4}\text{He}(\text{K}^{-},\pi^{-}){}^{4}{}_{\Lambda}\text{He}$ Beam mom.: P_{K} =1.5GeV/c Target: Liq. 4He, 2.8g/cm² Reaction- γ coincidence

T. Harada, private communication (2006)

A=4 mirror Λ-hypernuclei

$$\Delta B_{\Lambda} (g.s) = B_{\Lambda} (0^{+}; {}^{4}_{\Lambda}He) - B_{\Lambda} (0^{+}; {}^{4}_{\Lambda}H) = 270 \pm 100 \text{ keV}$$

$$\Delta E_{\gamma} (1^{+} \rightarrow 0^{+}) = E_{\gamma} ({}^{4}_{\Lambda}He) - E_{\gamma} ({}^{4}_{\Lambda}H) = 316 \pm 40 \text{ keV}$$

$$\Delta B_{\Lambda} (1^{+}) = B_{\Lambda} (1^{+}; {}^{4}_{\Lambda}He) - B_{\Lambda} (1^{+}; {}^{4}_{\Lambda}H) = 50 \pm 100 \text{ keV}$$

CSB effect in ΛN

- Sizable
- Spin dependent

CSB in mirror nuclei: ³**H &** ³**He**

	ſ		() (keV)	to the ${}^{3}\text{H}{}^{3}\text{H}\text{e}$ mass difference <i>D</i> . The AV18+ <i>U</i> IX potential has been used.					
					Interactio	on term		D (keV)		
					Nuclear CSB			65		
0.400		1/3+			Point Co	ulomb	677			
8490	½⁺	12		7726	Full Cou	lomb		648		
			··		Magnetic	e moment		17		
³ H		³ H	³ He 764 keV		Orbit-orbit force			7		
					<i>n-p</i> mass	s difference	14			
	Ļ				Total (th	eory)		751		
В					Experiment			764		
xPT cal	cula	tion			Nogg	a et al., Phys.	Rev. C 67 0	34004 (2003)		
Coulomb	Bre	eit	(E_k)	Two-	body	Three-body	Theory	Experiment		
648	28	3	14	65(22)	5	760(22)	764		

J. L. Friar, G. L. Payne, and U. van Kolck, Phys. Rev. C 71, 024003 (2005)

Effect of $\Lambda N-\Sigma N$ coupling in ${}^4_{\Lambda}He$

- w.f.: Core + Λ
- ΛNN-3BYN
- Simulated Nijmegen soft-core potential
 - SC97e,f(S)
- Spin doublet spacing in A=4 system
 - $s_N \bullet s_\Lambda + \Lambda N-SN$
- Large effect on 0⁺
 - Coherent coupling

Y. Akaishi et al., Phys. Rev. Lett. 84 3539 (2000)

Relatively recent theoretical studies

- a. A. Nogga et al., PRL88 172501 (2002)
 - ΛNNN four-body calculation
 - NSC97e (Λ N- Σ N tensor term strong)
- b. A. Gal PLB 744 352 (2015)
 - Akaishi-formalism + explicit CSB term via mixing of $\Lambda\Sigma^0$ to $\Lambda\Sigma$ strong interaction.
- c. D. Gazda and A. Gal PRL (in press), arXiv:1512.01049 (2016)
 - \bullet Ab-initio No Core Shell Model (NCSM) with χEFT YN interaction
 - N3LO NN + N2LO NN + LO/NLO YN
 - Inclusion of explicit ΛN - ΣN interaction

(Unit in MeV)	Ехр	а	b	С
B _Λ (0 ⁺)	0.27(10)	0.07	0.22	0.18(10)
B _Λ (1 ⁺)	0.05(10)	-0.01	0.03	-0.20(2)

Summary

- NN strong interaction to more general baryon-baryon interaction
 - ΛN interaction is the first step with Strangeness=-1
 - YN scattering experiments difficult \rightarrow study of hypernuclei
- New data on A=4 ${}^{4}{}_{\Lambda}$ H and ${}^{4}{}_{\Lambda}$ He from MAMI-C and J-PARC
- AN CSB is confirmed.
 - Larger than NN (unexpected) \rightarrow role of Λ N- Σ N 3-body interaction
 - Strongly spin dependent

Experimental progresses have opened a new testing ground for a nuclear few-body calculations.

Observation of a ⁴_{\Sigma}**He Bound State**

Isospin dependence of the (3N)-Σ potentials

ΛN

 $U_0(\Lambda) \sim (-30) \text{ MeV}, U_{LS}(\Lambda) \sim 2 \text{ MeV} \rightarrow 精密測定$ =∑N -38 MeV? $U_{LS}(\Lambda) \sim 2 \text{ MeV} \rightarrow 13@\text{J-PARC}$

 $U_0(\Sigma) \sim 斥力的, U_{LS}(\Sigma)? \longrightarrow \Sigma^+ p(=\Sigma^-n)$ 散乱 E40@J-PARC AN- Σ N

a few % mixing, <u>ANN3体力</u>→中性子過剰ハイパー核 E10@J-PARC

 $U_0(\Xi) \sim (-14)-(-0) \text{ MeV } ? \rightarrow (K-,K+)反応, \Xi-原子X線$ $\Delta\Lambda-\Xi N-\Sigma\Sigma$

mixing prob. ?, H-particle ? →Hybrid-emulsion, $\Lambda\Lambda$ 相関 K⁻N- $\Lambda(1405)$ - $\pi\Sigma$ E07, P42@J-PARC

 U_0 (K⁻) ~ -200 MeV/-50 MeV ?, "K-pp"? \rightarrow (K⁻,N), (π^+,K^+)反応

E15,E23@J-PARC

Strange baryon & Hypernucleus

CSB in AN interaction

 $B_{\Lambda}({}^{4}_{\Lambda}\text{He}; I) = [M_{\text{core}} + M_{\Lambda}] - M({}^{4}_{\Lambda}\text{He}; g.s) + E_{x}({}^{4}_{\Lambda}\text{He}; I)$ -) $B_{\Lambda}({}^{4}_{\Lambda}\text{H}; I) = [M_{\text{core}} + M_{\Lambda}] - M({}^{4}_{\Lambda}\text{H}; g.s) + E_{x}({}^{4}_{\Lambda}\text{H}; I)$

 $\Delta B_{\Lambda}(I) = - \Delta M^{gs}_{HYP} + \Delta E_{x}(I)$

$$\begin{split} \Delta B_{\Lambda}(1^{+})-\Delta B_{\Lambda}(0^{+};g.s) = & \Delta E_{x}(1^{+}) = \Delta E_{\gamma}(1^{+} \longrightarrow 0^{+}) \\ & \text{Measure of almost pure CSB in} \\ & \Lambda \text{N interaction} \end{split}$$

 $[M_{core}+M_{\Lambda}]$: reference = 0

A=7, T=1 iso-triplet hyp. nuclei

Charge symmetry

M. A. Bentley et al., Phys. Rev. Lett. 97 132501 (2006)

Isospin invariance and charge symmetry

• Isospin invariance: [H_{st},T²]=[H_{st},T]=0

•
$$a_{nn} = a_{pp} = a_{np}$$
 (scattering length in ${}^{1}S_{0}$;T=1)

• Charge symmetry: $[H_{st}, P_{cs}]=0$ where $P_{cs}=exp(i\pi T_{\alpha})$ • $a_{nn}=a_{pp}$

$$a_{pp} = -17.7 \pm 0.4 \text{ fm} \\ a_{nn} = -18.8 \pm 0.3 \text{ fm} \\ a_{np} = -23.75 \pm 0.09 \text{ fm} \end{cases} \qquad \frac{\sigma(pp \to d\pi^+)}{\sigma(pn \to d\pi^0)} \neq (\approx) \frac{1}{2}$$

Mostly dominated by EM (Coulomb & π mass difference) effects