Nuclear Dynamics

IWM-ec2016 workshop Caen, May 2016

Chemical equilibrium ³He and ⁶He production

IMPORTANCE OF CLOSTERS

Clusters are important in the final states, at earlier times also!

SIMPLE EXAMPLE: 4 nucleons at T=10 MeV

Without correlation:
 <E> = 3/2 T x 4 = 60 MeV

Clusters influence the reaction dynamics and the bulk nuclear matter properties

Importance of clusters

TRANSPORT MODEL with CLUSTERS: Extended AMD with cluster correlations

Xe + Sn central collisions at 50 MeV/nucleon

(INDRA DATA & AMD calculations)

Cluster correlations in the final states of two nucleon collisions

Akira Ono (Tohoku University) NuSYM15-2015

Projectile/Target nucleon exchange and mid-rapidity chemistry

are governed by drift and diffusion transport phenomena

Diffusion: isospin exhange projectile/target with different N/Z (tends to N/Z_{composite}) **Drift**: neutron enrichment of low density zone created between projectile & target

See also CHIMERA/MSU,... publications

S.Barlini et al. PRC 87, 054607 (2013)

Nuclear Dynamics

Study of chemical equilibration between PLF & TLF

Light Charged Particle emitted in the forward part of the c.m (neutrons are not detected) INDRA multi-detector

mbarn	124+112	L2 124+124 136+112		136+124
¹Н	7960	7170	6620	6240
² H	2490	2710	2770	3090
³Н	1340	1780	1970	2610
³ He	570	490	420	400
⁴ He	6990	7260	7010	7500
⁶ He	110	150	160	240
TOTAL	19460	19560	18950	20080

(Statistical error: few mbarns)

No data selection/Inclusive events except elastic events are excluded

mbarn	124+112	124+124 136+112		136+124
¹Н	7960	7960 7170		6240
² H	2490	2710	2770	3090
³ Н	1340	1780	1970	2610
³ He	570	490	420	400
⁴He	6990	7260	7010	7500
⁶ He	110	150	160	240
TOTAL	19460	19560	18950	20080

(Statistical error: few mbarns)

Total lcp production is system independent (within 6%)

mbarn	124+112	112 124+124 136+112		136+124
¹Н	7960	7170	6620	6240
²Н	2490 2710		2770	3090
³ Н	1340	1780	1970	2610
³ He	570	490	420	400
⁴ He	6990	7260	7010	7500
⁶ He	110	150	160	240
TOTAL	19460	19560	18950	20080

(Statistical error: few mbarns)

Total lcp production is system independent (within 6%) BUT THE CHEMISTRY IS!

mbarn	124+112	2 124+124 136+11		136+124
¹Н	7960	7170	6620	6240
²Н	2490	2710	2770	3090
³ Н	1340	1780	1970	2610
³ He	570	490	420	400
⁴He	6990	7260	7010	7500
⁶ He	110	150	160	240
TOTAL	19460	19560	18950	20080

(Statistical error: few mbarns)

Increasing the system neutron richness: n-rich lcp production is doubled

mbarn	124+112 124+124 136+112 136+124						
¹Н	Chanaina the projectile						
² H	& taraet N/Z:						
³Н	isotone production						
³ He	cannot he summed un in						
⁴ He							
⁶ He	solely neutron						
TOTAL	production difference						

3He production is different

PHYSICAL REVIEW C

VOLUME 3, NUMBER 2

Fragment Production in the Interaction of 5.5-GeV Protons with Uranium*

A. M. Poskanzer, Gilbert W. Butler,[†] and Earl K. Hyde Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

FIG. 13. Laboratory energy spectra at 90° to the beam. The curves for each element have been multiplied by a different factor which is indicated in the upper right part of the figure. The broken curves are for the most neutron-deficient isotope of each element. All the curves should be raised by the factor 1.10.

PHYSICAL REVIEW C

VOLUME 16, NUMBER 2

AUGUST 1977

Central collisions of relativistic heavy ions*

J. Gosset,[†] H. H. Gutbrod, W. G. Meyer, A. M. Poskanzer, A. Sandoval, R. Stock, and G. D. Westfall

Lawrence Berkeley Laboratory, Berkeley, California 94720, Gesellschaft für Schwerionenforschung, Darmstadt, Germany, and Fachbereich Physik, Universität Marburg, Marburg, Germany

FIG. 19. Comparison of the energy spectra at 90° in the laboratory of proton through nitrogen fragments produced by the irradiation of uranium with 20 Ne ions at 400 MeV/nucleon.

VOLUME 47, NUMBER 16

PHYSICAL REVIEW LETTERS

19 October 1981

Particle Emission at a ²⁰Ne Projectile Velocity Comparable to the Fermi Velocity

J. B. Natowitz, M. N. Namboodiri, L. Adler, R. P. Schmitt, R. L. Watson, S. Simon, M. Berlanger, and R. Choudhury^(a) Cyclotron Institute, Texas A & M University, College Station, Texas 77843

FIG. 2. Slope determinations for Ta data at $\theta_L = 15^{\circ}$. The data have been transformed into the projectile frame.

K.G.R. Doss et al. (PlasticBall) Modern Phys Lett 9 (1988) 849

Fig. 3. Mean transverse energy per particle (upper half) and per nucleon (lower half) of p, d, t, ³He and ⁴He at $\theta_{em} = 90^{\circ}$ as a function of normalized multiplicity and the mean transverse energy per nucleon for the whole set of particles for collisions of Au + Au and Nb + Nb at 250 MeV per nucleon, respectively. (For errors see Fig. Caption 2).

۰,

LCP production: ³He

50 A.MeV Xe+Sn « FUSION » events

Lcp: data versus Expanding Emitted Source-model (W.A. Friedman PRC42 (1990) 667.)

R. Bougault, J.P. Wieleczko et al. BORMIO 1997

Figure 9: EES and light charged particles for 50 Xe+Sn : average c.m kinetic energy of the light charged particles (black squares are data) for a perpendicular emission ($70^{\circ} \leq \Theta_{\rm cm} \leq 110^{\circ}$) in the center of mass. The result of the EES-calculation which reproduces the associated fragment characteristics is shown (line).

Figure 10: EES-calculation : cumulative yield for 4 He, 3 He and triton production. The first 35 fm/c corresponds to surface emission during the expansion phase.

LCP production: ³He

Abstract: The angular distribution of the inclusive reaction ${}^{4}\text{He}+p \rightarrow {}^{3}\text{He}+X$ was measured with 6.85 GeV/c incident alphas. At large angles, the observed kinematics corresponds to the elastic scattering on the target proton of an ${}^{3}\text{He}$ present in the incoming ${}^{4}\text{He}$, the remaining neutron being a spectator. This shows the presence of an important component of ${}^{3}\text{He}$ in ${}^{4}\text{He}$. The integrated cross section for ${}^{3}\text{He}$ production is $\sigma_{{}^{3}\text{He}} = 24.1 \pm 1.9 \text{ mb}.$ $(p + {}^{4}\text{He} reaction cross-section is 110 \text{ mb})$

Lcp cross-sections: production probabilities folded by reaction cross-section

To study equilibrium:

Production probabilities (multiplicities) divided by 1H multiplicities to remove trivial size effects.

Chemistry related to concentrations thus Mx/Mproton (abundance ratio).

Cluster abundance ratios

Cluster abundance ratios

Comparing ¹³⁶Xe+¹¹²Sn and ¹²⁴Xe+¹²⁴Sn: abundance ratios are (projectile+target) N/Z dependent. CHEMICAL EQUILIBRIUM IS ~ACHIEVED (central collisions)

0 50 100 150 200 250 300 0 50 100 150 200 250 300

 $(\Sigma E_t)_{AVCM}^{lcp}$ [MeV]

 $(\Sigma E_t)_{AvCM}^{Icp}$ [MeV]

LCP production mode (forward c.m): ²H

Emission from projectile-like fragment & at mid-rapidity

Projectile/Target nucleon exchange and mid-rapidity chemistry

are governed by drift and diffusion transport phenomena

LCP production mode (forward c.m): ²H

Emission from projectile-like fragment & at mid-rapidity

Projectile-like: 0°-30° angle selection ½ rapidity: 60°-90° angle selection

Cluster abundance ratios ("PLF")

Cluster abundance ratios ("1/2 rapidity")

Cluster abundance ratios 1/2 rapidity divided by PLF

Cluster abundance ratios 1/2 rapidity divided by PLF

- PLF & ½-rapidity different N/Z
- ⁶He: reflects ½ rapidity n-enrichment

R. Bougault INDRA/FAZIA collaboration

LCP production: ³He

- PLF: N/Z dependence
- ¹/₂ rapidity: total size (not N/Z) dependence

3He produced before chemical equilibrium achievement

Coalescence prior thermalization: W. Neubert, A.S. Botvina Eur. Phys. J. A 7 (2000)

W. Reisdorf et al. (FOPI) NPA848 (2010) 366.

This conjecture is supported by Fig. 18 which shows the ${}^{3}\text{H}{-}^{3}\text{He}$ difference spectrum together with data for ${}^{4}\text{He}$. The ${}^{3}\text{H}$ and the ${}^{3}\text{He}$ compete to be a condensation nucleus to a possible ${}^{4}\text{He}$. If both mass 3 isotopes are in a neutron-rich environment, the ${}^{3}\text{He}$ will 'win' for two reasons:

a) it is easier to 'find' a single neutron to attach to ³He than a single proton to attach to ³H;
b) in contrast to ³H, the ³He nucleus does not Coulomb-repulse its needed partner.

Conclusions

- Light Charged Particle abundance ratios dependence against impact parameter: high degree of chemical equilibrium is achieved in central collisions.
- ³He mean characteristics strongly differ from other studied lcp's: helion production takes place before chemical equilibrium achievement.
- Achieved N/Z balance between PLF & TLF does not imply a pure 2-body mechanism: mid-rapidity source does exist with N/Z different as compared to PLF (n-enrichment).
- ⁶He production is favored by the drift phenomena.
- Results obtained with INCLUSIVE DATA
- Importance of clusters.
- ³He & ⁶He should be used to compared data/transport models (stiff/soft Esym)
- Analysis will be extended (higher elements) using FAZIA@INDRA at GANIL

FAZIA DEMONSTRATOR at LNS

Pulse Shape identification

DE/E identification

	$(N/Z)_{proj}$	$(N/Z)_{targ}$	drift	dif.
124 + 112	1.30	1.24	Yes	$\approx No$
124 + 124	1.30	1.48	Yes	Yes
136 + 112	1.52	1.24	Yes	Yes
136 + 124	1.52	1.48	Yes	$\approx No$

	$(N/Z)_{proj}$	$(N/Z)_{targ}$	drift	dif.
124 + 112	1.30	1.24	Yes	$\approx No$
124+124	1.30	1.48	Yes	Yes
136 + 112	1.52	1.24	Yes	Yes
136 + 124	1.52	1.48	Yes	$\approx No$

		$(N/Z)_{proj}$	$(N/Z)_{targ}$	drift	dif.	
	124 + 112	1.30	1.24	Yes	$\approx No$	
	124 + 124	1.30	1.48	Yes	Yes	
_	136 ± 112	1.52	1 24	Ves	Ves	
	136+124	1.52	1.48	Yes	\approx No	

	$(N/Z)_{proj}$	$(N/Z)_{targ}$	drift	dif.	
124 + 112	1.30	1.24	Yes	$\approx No$	
124 + 124	1.30	1.48	Yes	Yes	
136 + 112	1.52	1.24	Yes	Yes	
136 + 124	1.52	1.48	Yes	$\approx No$	

	$(N/Z)_{proj}$	$(N/Z)_{targ}$	drift	dif.]
124 + 112	1.30	1.24	Yes	$\approx No$]
124 + 124	1.30	1.48	Yes	Yes	1
136 + 112	1.52	1.24	Yes	Yes	
136 + 124	1.52	1.48	Yes	$\approx No$	

