Energetics and deformation at scission

M. Caamaño (U. Santiago de Compostela, Spain)

Experimental observables

M. Caamaño, F. Farget et al., PRC 88, 024605 (2013)

Can we go further with simple assumptions?

We focus on ^{240}Pu (<E*>= 9 MeV)

Experimental observables. Back to scission

Experimental observables at scission

M. Caamaño, F. Farget et al., PRC 92, 034606 (2015)

Elongation at scission

M. Caamaño, F. Farget et al., PRC 92, 034606 (2015)

FUSTIPEN 2016

Energy balance at scission

Can we do more?

$$M_{\rm FS} + E_{\rm FS}^* = M_1 + M_2 + TKE + TXE$$

$$TKE = E^{k,C}(Z_1, Z_2, \beta_1, \beta_2, d) + E^{k,pre}$$
Coulomb
repulsion
fragment
deformation
distance

$$TXE = E^{*,Bf} + E^{*,dis} + \sum_{i=1}^{2} E_i^{*,def}(\beta_i)$$
energy
above Bf dissipated
energy

Energy balance at scission. Excitation energy

Energy balance at scission. Excitation energy

$$TXE = E^{*,Bf} + E^{*,dis} + \sum_{i=1}^{2} E_i^{*,def}(\beta_i)$$

energy energy $i=1$ deformation
above Bf dissipated energy

The measurements of the E*_{FS} of the fissioning system and its barrier are performed with the same setup

The proton even-odd effect (
$$\delta_z$$
) is related
with the amount of intrinsic energy L

$$E^{*,\mathrm{Bf}} = E_{\mathrm{FS}}^* - \mathrm{Bf} \approx 3 \,\mathrm{MeV}$$

C. Rodríguez Tajes et al., PRC 89, 025614 (2014)

$$E^{*,\mathrm{Bf}} + E^{*,\mathrm{dis}} \approx -4\ln(\delta_z)$$

F. Gönnenwein, "The Nuclear Fission Process" (1991)

M. Caamaño

The dissipated energy can be also related with the available TXE:

$$E^{*,\mathrm{dis}} = F^{\mathrm{dis}}(TXE - E^{*,\mathrm{Bf}})$$

 $F^{\rm dis} \approx 0.35$ GEF code: NDS 131,107 (2016)

Energy balance at scission. Excitation energy

$$\sum_{i=1}^{2} E_{i}^{*,\text{def}}(\beta_{i}) = (1 - F^{\text{dis}})(TXE - 3)$$
We need to split it between the fragments
This energy is released in post-scission evaporation:
$$\sum_{i=1}^{n} \sum_{i=1}^{2} \sum_{i=1}^{n} \sum_{i=1}^{n$$

We assume that the sharing of the energy released is very similar to that of neutron binding

$$E_i^{*,\text{def}}(\beta_i) \approx (1 - F^{\text{dis}})(TXE - 3)\left(\frac{Q_i^{\nu}}{Q_1^{\nu} + Q_2^{\nu}}\right)$$

We transform the Ei^{*,def} into deformation with a simple factorisation around **B** of the mass formula, taking into account the deformation at the g.s.

Energy balance at scission. Deformation

$$E_i^{*,\text{def}}(\beta_i) \approx (1 - F^{\text{dis}})(TXE - 3) \left(\frac{Q_i^{\nu}}{Q_1^{\nu} + Q_2^{\nu}}\right)$$

The value of F^{dis} is a weak point in our calculations, however, with $F^{dis} = 0$ we have an upper limit for the fragment deformation.

A. Bulgac et al., PRL 116, 122504 (2016)

Deformation

- The overall deformation is around 0.5
- The deformation grows with the size of the fragment, except between Z=45 50, reproducing the saw-tooth behaviour of the neutron multiplicity
- A minimum is formed around Z=50, but relatively far from spherical

Energy correction to deformed proton shells

- Light fragments go through a weak minimum around Z=44
- Around Z=50, the deformation seems to be dragged to the spherical configuration, but blocked by a "wall".

Energy correction to deformed neutron shells

- Light fragments run through a corridor with local minima at N=50 and 64
- Heavy fragments also run through a corridor with a minimum at N=88
- The deformation hardly approaches spherical configurations and the effect of N=82 seems weak, in this case.

Energy correction to deformed proton and neutron shells

- When considered together, the corrections to n and p shells weakens the effect of N~88 and some of N~64.
- The N~64 remains as an accessible minimum out of what is seems a long corridor.

Energy correction to deformed proton and neutron shells

- The experimental deformations mostly run through this corridor except around N~64, where the approaching of the light fragment competes with the potential wall that its heavy partner finds at N~80.

- We also realised there is a strong correlation between the deformation of split partners.

Energy balance at scission. Kinetic energy

$$\overset{\text{red}}{=} E^{\mathbf{k},\mathbf{C}}(Z_1,Z_2,\beta_1,\beta_2,d) + E^{\mathbf{k},\mathrm{pre}}$$

Different models estimate it between 10-20 MeV. We will use the calculations of Ivanyuk et al.

M. Borunov et al., NPA 799, 56 (2008)

1200

 $Z^{2}/A^{1/3}$

1000

1400

1600

FUSTIPEN 2016

-15 600

800

BASurei $E^{\mathrm{k,C}}(Z_1, Z_2, \beta_1, \beta_2, d)$ k,pre Ivanyuk

We use the formula of Cohen-Swiatecki to calculate the repulsion between two coaxial homogeneously charged ellipsoids

S. Cohen and W. Swiatecki, Annals of Physics 19, 67 (1962).

- The overall value is ~5 fm, which is much larger than the "standard" (below 3 fm). Only at the lower limit reaches ~2 fm.
- A distinctive minimum appears at Z=50.

Distance. Comparing with...

 SPM calculations for ²³⁶U also predict a minimum around Z~52. Although more pronounced. HFB calculations also calculate a deeper minimum around Z~52 for ²³⁸U

- Fixing the tip distance, the effect of the deformation alone does not reproduce the features of the observed TKE.

- Fixing the tip distance, the effect of the deformation alone does not reproduce the features of the observed TKE.
- The effect of the neck distribution applied to spherical fragments mimics the same behaviour of the TKE.
- There must be a mechanism that links the structure effects to the length of the neck.

Assuming ß and d are unique for each mode, we fit simultaneously the isotopic yield distribution and the TKE

$$Y_Z = \sum_j \frac{I_j}{\sigma_j \sqrt{2\pi}} \exp\left(\frac{-(Z - Z_{0,j})^2}{2\sigma_j^2}\right)$$

$$TKE_Z = \frac{\sum_j Y_Z(Z_{0,j}, \sigma_j, I_j) \cdot E^{\mathbf{k}, \mathbf{C}}(\beta_{1,j}, \beta_{2,j}, d_j)}{\sum_j Y_Z(Z_{0,j}, \sigma_j, I_j)} + E^{\mathbf{k}, \text{pre}}$$

TABLE I. Fission channel parameters.

	SL	SI	SII	\mathbf{SA}
Z_0	47	51.8(4)	54.4(4)	58(2)
σ	4.4(4)	1.3(2)	2.0(1)	1.5(2)
Yield (%)	5(1)	23(8)	66(9)	6(3)
β_1	0.5(1)	0.7(2)	0.3(1)	0.0(2)
β_2	0.5(1)	0.4(1)	0.6(1)	0.7(4)
$d ({\rm fm})$	4.9(3)	3.8(4)	4.9(2)	5.9(7)
$R_{c.m.}$ (fm)	20.4(6)	19.3(6)	19.8(6)	20(1)

- The modes on the yield distribution are pretty much in agreement with previous measurements
- We find a super-asymmetric component with similar contribution as that of the super-long mode.

B. D. Wilkins et al., PRC 14, 1832 (1976)

TABLE I. Fission channel parameters.

	SL	SI	SII	\mathbf{SA}
Z_0	47	51.8(4)	54.4(4)	58(2)
σ	4.4(4)	1.3(2)	2.0(1)	1.5(2)
Yield (%)	5(1)	23(8)	66(9)	6(3)
β_1	0.5(1)	0.7(2)	0.3(1)	0.0(2)
β_2	0.5(1)	0.4(1)	0.6(1)	0.7(4)
$d~({ m fm})$	4.9(3)	3.8(4)	4.9(2)	5.9(7)
$R_{c.m.}$ (fm)	20.4(6)	19.3(6)	19.8(6)	20(1)

- SL: Is "stuck" between two walls
- SI: N~64 decides the deformation on the light fragment
- SII: N~88 decides the deformation on the heavy fragment
- SA: Might be dragging its light fragment towards N=50

B. D. Wilkins et al., PRC 14, 1832 (1976)

TABLE I. Fission channel parameters.

.					
	SL	SI	SII	SA	
Z_0	47	51.8(4)	54.4(4)	58(2)	
σ	4.4(4)	1.3(2)	2.0(1)	1.5(2)	
Yield (%)	5(1)	23(8)	66(9)	6(3)	
eta_1	0.5(1)	0.7(2)	0.3(1)	0.0(2)	
eta_2	0.5(1)	0.4(1)	0.6(1)	0.7(4)	
$d~({ m fm})$	4.9(3)	3.8(4)	4.9(2)	5.9(7)	
$R_{c.m.}$ (fm)	20.4(6)	19.3(6)	19.8(6)	20(1)	

- SL: Is "stuck" between two walls

- SI: N~64 decides the deformation on the light fragment
- SII: N~88 decides the deformation on the heavy fragment
- SA: Might be dragging its light fragment towards N=50
- Proton shells seem to have little influence, except, maybe, at SI (Z~44)

B. D. Wilkins et al., PRC 14, 1832 (1976)

TABLE I. Fission channel parameters.

	SL	SI	SII	SA
Z_0	47	51.8(4)	54.4(4)	58(2)
σ	4.4(4)	1.3(2)	2.0(1)	1.5(2)
Yield (%)	5(1)	23(8)	66(9)	6(3)
eta_1	0.5(1)	0.7(2)	0.3(1)	0.0(2)
eta_2	0.5(1)	0.4(1)	0.6(1)	0.7(4)
$d~({\rm fm})$	4.9(3)	3.8(4)	4.9(2)	5.9(7)
$R_{c.m.}$ (fm)	20.4(6)	19.3(6)	19.8(6)	20(1)

- Mostly, all the modes have configurations around 20 fm, except the SI.

- As we saw previously, the SI mode: is the only deviation from a long corridor.
- Also, more nucleons "blocked" in shells and less on the neck, making it "brittle"? Is this the connection between shells and TKE?

Wrap up

- The calculation of TKE, TXE, neutron multiplicity, and neutron excess at scission was possible with the measurement of the fragments yield, velocity, and as a function of the fragment identification in (Z,A).
- A detailed energy balance at scission with these observables allowed us to estimate the deformation and separation of the emerging fragments.
- The results show that mostly deformed neutron shells are responsible for the fragment deformation.
- The link between these shell effects and the measured TKE is done through the tip distance, hinting at a direct link between structure and the length of the neck.

Investigate the deformation of ²⁵⁰Cf at -42 MeV and its mysterious N/Z

²³⁹Np (7.5 MeV)

Study the systematics of Diego's data as a function of E*

Next

Scission landscape

Scission landscape

Scission landscape

