French-U.S. Theory Institute for Physics with Exotic Nuclei Dynamical cluster formation and correlations in heavy-ion collisions, within transport models and in experiments

Ganíl 17-19 May

Study of two and multi particle correlations in ¹²C+²⁴Mg collisions at 35 AMeV

Lucia QUATTROCCHI INFN & Università di Catania

Two and multi particle correlation in Heavy Ion Collisions

Correlation measurements as probe for spectroscopy and dynamics

Dynamics vs Spectroscopy

Correlation function depend on some of spectroscopic properties

(if no collective motion G. Verde, P. Danielewicz et al. Physics B653 (2007))

$$1 + R(E_{rel}) = \frac{Y_{corr}(E_{star})}{Y_{uncorr}(E_{star})} \propto \sum_{i} (2J_{i}) + 1 \left[\frac{\Gamma_{i}}{(E_{i})^{2} + \Gamma_{i}^{2}/4} \right];$$

Spectroscopy tools from resonances decay

"CORRELATION" experiment with CHIMERA at LNS

MAIN GOALS:

¹²C+ ²⁴Mg @ 35 AMeV ¹²C+ ²⁰⁸Pb @ 35 AMeV Nuclear dynamics
 Space-time evolution of emitting source;
 Density and emission temperature ;

Invariant Mass Spectroscopy

✓ Resonances decay of light nuclei;
✓ Clustering in nuclei and nuclear matter;
✓ Effects of medium and reaction process on the decay of resonance (in-medium structure)

Typel Phys. Conf. Ser. 420.012078;

CHIMERA Charged Heavy Ion Mass and Energy Resolving Array

Granularity	1192 moduli Si (300μm) +CsI(Tl)
Geometry	RINGS: 688 modules 100-350cm SFERA: 504 modules 40 cm
Angular coverage	RINGS: 1°< θ < 30° SPHERE: 30°<θ<176°, 94% 4π

Angular range used

0°<θ<30° QP decay in semi-pheripheral collisions Particles identification:

Up to Z=8 with dE-E and PSD in CsI(TI);

Two particle correlations with CHIMERA

 $^{8}Be \rightarrow \alpha + \alpha$

Three- and two-particle correlations: sequential vs direct

Exploring nuclear structure (sequential and direct decay resonance decay widths) in dissipative heavy-ion collisions

0+

Decay width fully <u>Sequential</u> observed

Itoh, PRC 113 (2014) 102501 Rana PRC 88 (2013) 021601 M. Freer et al., PRC 49 (1994) R1751

Inelastic Scattering

....Evidence of <u>Direct</u> decay mechanisms

Raduta et al. , Phys. Lett. B 705, 65 (2011) F. Grenier et al., Nucl. Phys. A811, 233 (2008)

Events Selection

Criteria to select events (excitation and decay of quasi-projectile)

Confirmed by comparison with model prediction

D. Lacroix et al. , Phys. Rev. C69 054604

3α Correlations in ¹²C+²⁴Mg

Montecarlo Simulations

Genbod Monte Carlo events generator

Direct

Detection simulations with CHIMERA apparatus

Hoyle State: Dalitz Plots

Hoyle State: Symmetric Dalitz Plots

Hoyle State sequential vs direct: ε_i distribution

Sequential vs direct: fit of ε_i distribution

20 % < Direct Contribution < 60%

¹²C state at E*=9.64: Dalitz Plots

¹²C states at E*=9.64: Symmetric Dalitz Plots

¹²C state at E*=9.64 : Polar Dalitz correlation

Fit of Polar Dalitz correlation plots

In- medium dynamics on the structure properties?

Medium characterization: emission temperatures

Thermal Model

The relative population of particle unstable states is strictly related to the temperature of the system

 $^{8}Be -> 2\alpha$

Medium characterization: emission temperatures (2)

In- medium dynamics on the structure properties?

Quasi – projectiles system represents a warm medium at temperature that may approach 5 MeV values!

Spokespersons: G. Verde and D. Gruyer

Conclusions

Study of two- and three- particles correlations in dissipative QP decay

✓ ⁸Be emission Temperature (Thermal model)

 ✓ Focus on ¹²C: strong contribution of direct decay mechanism is present for all observed states (in agreement with Raduta et al. In ⁴⁰Ca+¹²C with CHIMERA and Grenier et al. In ¹²C+²⁴Mg with INDRA);

✓In- medium dynamics on the structure properties: effects of medium on structure properties of observed states???

 \checkmark such direct decay could depend on complicate case of final state interactions within the 3 α particle system produced by projectile fragmentation

L. Quattrocchi^{1,2}, L. Acosta^{3,13}, F. Amorini⁷, A. Anzalone⁷, L. Auditore^{1,2}, G. Cardella³, A. Chbihi⁵, E. De Filippo³, Francalanza^{7,9}, G. Lanzalone^{7,10}, I. Lombardo^{8,11}, I. Martel⁶, T. Minniti⁹, S. Norella^{1,2}, A. Pagano³, E.V. Pagano^{7,9}, M. Papa³, S. Pirrone³, G. Politi^{3,9}, F. Porto^{7,9}, F. Rizzo^{7,9}, E. Rosato^{8,11†}, P. Russotto³, A. Trifiro^{1,2}, M. Trimarchi^{1,2} G. Verde^{3,4}, M. Veselsky¹², M. Vigilante^{8,11}

b and d are free parameters. This phenomenological function describes very well two-particle correlations which are not dominated by resonant interactions, but only by long-range Coulomb repulsion Using the two Coulomb background correlation functions, shown in Fig. 4.6, calculated yield ratio changes of less then 5% and the extracted temperature by about 0.6 MeV

the yield ratio Y1/Y2 is no more sensitive to the energy ranges chosen for integration.

