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Ab initio methods for light to medium-mass nuclei 

Based on realistic two and three body interactions.  

• Green’s function Monte Carlo 

• Self-consistent Green’s function 

• No-core shell model 

• Coupled Cluster 

• In-medium similarity renormalization group  

 

Nuclear density functional theory for heavy nuclei 

Phenomenological density dependent interactions. 

HFB approximations and extensions: 

Symmetry restoration (Number, angular momentum, ….) 

QRPA, Time-dependent DFT, ….. 

 

PoST: an initial attempt to bridge the gap between CCD and 

NPHFB  
 

 



The reduced BCS Hamiltonian or 

the constant pairing model   
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The 3 generators close 

the SU(2) algebra 

Richardson solved exactly this Hamiltonian. Phys. Lett. 3 (1963) 277. 

The complete set of eigenvectors have the form: 
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For simplicity we will consider equidistant levels i=i and systems at half filling M=L/2.  

 



Pair Coupled Cluster Doubles (pCCD)  

CC theory  is based on p-h excitations, singles, doubles, triples, etc.  out of a 

reference |HF>,  T=T1+T2+T3+ The pairing Hamiltonian conserves seniority. 

Within the each seniority subspace only even p-h excitations are permitted. 

Moreover, we will stop at doubles which means that the excitation operator is          

,

ph p h

p h

T t P P
The pCCD wave function and eigenvalue equations are 

,T Te HF H Ee HF   

Multiplying by the inverse transformation from the left 

,T TH e He H HF E HF 

Projecting over the reference state and over 2p-2h states  from the left 

, 0 h pE HF H HF HF P P H HF 

Energy  Amplitude equations 

Similarity transformed Hamiltonian (non-hermitian) 



J. Dukelsky, G. G. Dussel, J. G. Hirsch and P. Schuck. Nucl. Phys. A 714 (2003) 63. 

T. M. Henderson, G. E. Scuseria, J. Dukelsky, A. Signoracci, and T. Duguet, Phys. Rev. C 89, 054305 (2014). 

T. M. Henderson, I. W. Bulik, and G. Scuseria, J. Chem. Phys. 142, 214116 (2015). 

pCCD fails dramatically around the phase transition. pECCD and BCS oe Bogoliubov  

pCCD improve but not yet satisfactory.   

Number projected BCS pCCD could be an alternative. T. Duguet, A. Signoracci, 

arXiv:1512.02878 



Number Projected BCS (PBCS) Wavefunction 

The number projected BCS  wavefunction is a pair condensate:   
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We want express PBCS as a correlation operator acting on a HF reference state. 

First we separate the correlated pair operator in p and h parts:  
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Next we expand the condensate  
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We now use a trick to replace the vacuum by the HF state 
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Acting with the a pair destruction    

The r.h.s is precisely the term appearing the binomial expansion.  
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Modified Bessel function of the first kind 

Or 
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Separable amplitude matrix 

Alternatively we will explore the exponential form 



Correlation energies referred to the exact correlations energy for 

PBCS and Exponential wave function   

Variational approach (upper bound). Factorized cluster matrix. Factorial 

exponent  = 2 (1) for PBCS (Exponential).   



We can still improve using the exponent  as a variational parameter. 

  ,

1

!

l

p

p h

l p h h

x
Var N P P HF

xl



 

  
 

 

The bad convergence to g->0 is not related to the coefficients in the expansion.  



Comparison between pCCD and PBCS 

Would be nice to include results from: 

Symmetry broken and restored coupled-cluster theory. II. Global gauge symmetry and particle 

number. T. Duguet, A. Signoracci. arXiv:1512.02878.  
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Non-hermitian similarity transformed 

Hamiltonian. Non-variational theory. 

Complete freedom in cluster amplitudes tph. 

Implies correlations between 2p-2h. Quartet 

correlations. 

Due to the exponential it has nice properties: 

size consistent, size extensive. 

Accurate for weak pairing correlations.   

 

 

Variational theory. 

 

Factorized cluster amplitudes. Implies 

pair correlations.  

Not size consistent. Includes intensive 

terms.  

 Accurate for superconducting 

systems 

pCCD PBCS 



Polynomial Similarity Transformation Theory (PoST)   

Keep full freedom in the cluster amplitudes tph  (beyond pair correlations) 

Abandoned exponential form and the properties of  consistency and extensivity. 

 Abandoned Ritz variational property. 

Instead of exponential or Bessel, assume a general polynomial of an excitation 

operator T, and the corresponding inverse:   
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The PoST ansatz for the wave function and the similarity transformed Hamiltonian are  
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Expanding the similarity transformation 
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Whose eigenvalues are the same as the eigenvalues of H. 

We note that if                   the term              cancels out and       is purely connected 

(express in terms of nested commutators of H and T). 

In what follow we will restrict  PoST to only doubles T2 

Similarly to pCCD the PoST equations are 

 

 

And we can disregard terms of order HT3.  

Moreover, we will parametrized the polynomial coefficients as    
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Question: How can we determine  ? 

No Ritz variational theory. We cannot minimize E with respect to α.  



CCD and PoST doubles cancels R2 
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Singular values of PoST. 

For  G    all minus one singular values tend to 0. 



Overlap of the PoST wavefunction                                with the 

exact  wavefunction.   
 F T HF 



PoST with =2 is exact if PBCS is an exact eigenstate of H 

PBCS is an exact eigenstate in extreme superconducting limit G   

The hyperbolic Richardson-Gaudin model has particular point (Moore-Read) at which 

PBCS is an exact eigenstate.  
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A variant of this Hamiltonian has been proposed in J. D,. S. Lerma H., L. M. Robledo, R. 

Rodriguez-Guzman, and S. M. A. Rombouts Phys. Rev. C 84, 061301(R) (2011)  as an exactly 

solvable pairing Hamiltonian for heavy nuclei.  

 

The eigenstates are:  
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At the Moore-Read point 
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From PoST equations we have 
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It turns out that we insert the cluster amplitude                     as dictated by the exact 

solution, the three equations are satisfied for  
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PoST  is exact when PBCS is exact 



Summary 

• PoST seems to interpolate nicely between CCD and PBCS paving the way for using 

CC type of algorithms for medium to heavy-mass superfluid nuclei. 

• The pairing Hamiltonian can be solved exactly for any pairing strength. However, 

PoSt can deal with non-integrable pairing Hamiltonians, and with more general 

interactions without seniority conservation.  

• Important point to elaborate in the future is the lack of extensivity. A good 

approximate many-body theory might not fulfil all the constraints but it is required  to 

be as accurate as possible. 

• PoST is an approach close CCT. Therefore, many of the tools developed  in CCT 

can be extended to PoST: 1) Incorporate response theory to evaluate observables. 

2) Incorporate equation of motion for the description of excited states. 

• We are carrying out studies in condensed matter (Hubbard models) and quantum 

chemistry (molecular structure) where strong correlations are not of the superfluid 

type. Even so, PoST is improving the results of CCSD.       


