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Continuous unitary trans (basis change) decouples “off-diagonal” physics  
 
 

Interaction in new basis is simple 
 
 
 
 
 
 
 
 
 

In-Medium Similarity Renormalization Group 

Tsukiyama, Bogner, Schwenk, PRL (2011) 

H(s) = U(s)HU †(s) ⌘ Hd(s) +Hod(s) ! Hd(1)

hi|H|ji

Hod = hp|H|hi+ hpp|H|hhi+ · · ·+ h.c.

dH(s)

ds
= [⌘(s), H(s)]

hnpnh|H̃|�0i = 0
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Separate p states into valence states (v) and those above valence space (q) 
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H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, 02/19/2015

Valence Space Decoupling

• construct generator from off-diagonal Hamiltonian
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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(d)  Schematic picture of two-
       valence-neutron interaction
       induced from 3N force

FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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3N repulsion amplified with N: crucial for neutron-rich nuclei 

Probe limits of nuclear existence with 3N forces 

In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
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Large/valence-space methods with same SRG-evolved NN+3N-ind forces 
 
 
 
 
 
 
 
 
 
 
Agreement between all methods with same input forces 
 

No reproduction of oxygen dripline in any case 

Ground-State Energies in Oxygen Isotopes 
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Large/valence-space methods with same SRG-evolved NN+3N-full forces 
 
 
 
 
 
 
 
 
 
 
Agreement between all methods with same input forces 
 

Clear improvement with NN+3N-full 
 

Still significant discrepancy between valence/large-space results 

Ground-State Energies in Oxygen Isotopes 
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Normal-ordered 3N: contribution from core with valence particles 
 
 
 
 
 
 
 
Neglect 3N forces between valence nucleons 
 

 
 

How Do We Handle 3N Forces? 
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Normal-ordered 3N: contribution from core with valence particles 
 
 
 
 
 
 
 
Neglect 3N forces between valence nucleons – significant as 
 

3N Forces in Valence Space 
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Normal-ordered 3N: contribution from core with valence particles 
 
 
 
 
 
 
 
Neglect 3N forces between valence nucleons – significant as  
 

Capture these effects with new Targeted N.O. 
 

        Initial N.O. wrt nearest closed shell 
 

        Still decouple standard sd valence space 

Targeted Normal Ordering 

d3/2

s 1/2 d5/2

(a) G-matrix NN + 3N (∆) forces

d3/2

s 1/2
d5/2

4

-4

0

-8

Si
ng

le
-P

ar
tic

le
 E

ne
rg

y 
(M

eV
)

Neutron Number (N)
8 201614

Neutron Number (N)
8 201614

 NN + 3N (N  LO)

NN 
 NN + 3N (∆)NN 

 NN + 3N (∆)

low k (b) V         NN + 3N (∆,N LO) forces 
2

2

(d) 3-body interactions with one
      more neutron added to (c)

(c) 3-body interaction

O core16

N.O. 2-body 

d3/2

s 1/2 d5/2

(a) G-matrix NN + 3N (∆) forces

d3/2

s 1/2
d5/2

4

-4

0

-8
Si

ng
le

-P
ar

tic
le

 E
ne

rg
y 

(M
eV

)

Neutron Number (N)
8 201614

Neutron Number (N)
8 201614

 NN + 3N (N  LO)

NN 
 NN + 3N (∆)NN 

 NN + 3N (∆)

low k (b) V         NN + 3N (∆,N LO) forces 
2

2

(d) 3-body interactions with one
      more neutron added to (c)

(c) 3-body interaction

O core16

N.O. 0-body 

d3/2

s 1/2 d5/2

(a) G-matrix NN + 3N (∆) forces

d3/2

s 1/2
d5/2

4

-4

0

-8

Si
ng

le
-P

ar
tic

le
 E

ne
rg

y 
(M

eV
)

Neutron Number (N)
8 201614

Neutron Number (N)
8 201614

 NN + 3N (N  LO)

NN 
 NN + 3N (∆)NN 

 NN + 3N (∆)

low k (b) V         NN + 3N (∆,N LO) forces 
2

2

(d) 3-body interactions with one
      more neutron added to (c)

(c) 3-body interaction

O core16

N.O. 1-body 

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, 02/19/2015

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

� = �� +
�

�	

� �	 : ��
	 : +

�
�

�

�	
�

�	

� : ��	


� : +
�
��

�

���	
�

� ���
	
� : ����

	
� :

E0  =              +                   +                         

two-body formalism with 

in-medium contributions from 


three-body interactions

f     =              +                   +                         

Γ    =              +                   

W  =             

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, 02/19/2015

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

� = �� +
�

�	

� �	 : ��
	 : +

�
�

�

�	
�

�	

� : ��	


� : +
�
��

�

���	
�

� ���
	
� : ����

	
� :

E0  =              +                   +                         

two-body formalism with 

in-medium contributions from 


three-body interactions

f     =              +                   +                         

Γ    =              +                   

W  =             

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, 02/19/2015

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

� = �� +
�

�	

� �	 : ��
	 : +

�
�

�

�	
�

�	

� : ��	


� : +
�
��

�

���	
�

� ���
	
� : ����

	
� :

E0  =              +                   +                         

two-body formalism with 

in-medium contributions from 


three-body interactions

f     =              +                   +                         

Γ    =              +                   

W  =             

O core16 Ocore

16O !22 O

Nv ⇠ Nc



Large/valence-space methods with same SRG-evolved NN+3N-full forces 
 
 
 
 
 
 
 
 
 
 
Agreement between all methods with same input forces 
 

Clear improvement with NN+3N-full 
 

Still significant discrepancy between valence/large-space results 

Ground-State Energies in Oxygen Isotopes 
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Large/valence-space methods with same SRG-evolved NN+3N-full forces 
 
 
 
 
 
 
 
 
 
 
Improved method to capture neglected 3N forces in valence space 
 

“Targeted” N.O. results agree well with data and large-scale methods 
 

Targeted N.O. in Oxygen Isotopes 

NN+3N-full 

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015) 
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IM-SRG valence-space results for fully open F/Ne isotopes 
 
 
 
 
 
 
 
 
 
 
NN+3N-full improves agreement with experiment; overbound past N=14 
 

Beyond Semi-Magic: Ground States of F/Ne 

Stroberg et al., arXiv:1511.03802 
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IM-SRG valence-space results for fully open F/Ne isotopes 
 
 
 
 
 
 
 
 
 
 
NN+3N-full improves agreement with experiment; overbound past N=14 
 

Targeted N.O. results further improved – similar to phenomenology 

Beyond Semi-Magic: Ground-States of F/Ne 

Stroberg et al., arXiv:1511.03802 
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IM-SRG valence-space results for fully open F/Ne isotopes 
 
 
 
 
 
 
 
 
 
 
NN+3N-full improves agreement with experiment; overbound past N=14 
 

Targeted N.O. results further improved – similar to phenomenology 
 

Good agreement with large-space ab initio SCGF and MR-IM-SRG! 

Beyond Semi-Magic: Ground-States of F/Ne 

Stroberg et al., arXiv:1511.03802 
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3N force effects significant as       becomes large 
 
 
 
 
 
 
 
 
 
 
 
Targeted N.O. valence-space results agrees with large-space in most cases! 

Ground States from Oxygen to Calcium 

Stroberg et al., in prep 

Nv



3N force effects significant as       becomes large 
 
 
 
 
 
 
 
 
 
 
 
Targeted N.O. valence-space results agrees with large-space in most cases! 
 

28Si not good closed shell (single ref. calculation incorrect) 
 

Discrepancy with experiment from initial nuclear interactions 

Ground States from Oxygen to Calcium 

Stroberg et al., in prep 
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Neutron-rich oxygen spectra from existing shell-model approaches 
 
 
 
 
 
 
 
 
 
 
 
MBPT in extended valence space 

 

IM-SRG/CCEI spectra agree within ~300 keV 

Comparison with MBPT/CCEI Oxygen Spectra 
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Fluorine spectroscopy: NN+3N-ind and NN+3N-full, Full CC 
 
 
 
 
 
 
 
 
 
 
 
IM-SRG: competitive with phenomenology, good agreement with data 
 
 
 

Doubly Open Shell: Neutron-Rich F Spectra 
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Doubly Open Shell: Neutron-Rich Ne Spectra 
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Neon spectroscopy: NN+3N-ind and NN+3N-full 
 
 
 
 
 
 
 
 
 
 
 
IM-SRG: competitive with phenomenology, good agreement with data 
 
 



Without 3N forces same 1+ – 3+ inversion as the famous case in 10B 
 
 
 
 
 
 
 
 
 
 
 
With 3N forces IM-SRG, CCEI both predict incorrect 1+ ground state 
 

The Special Case of 22Na 

Stroberg et al., arXiv:1511.03802 

S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 101

Fig. 8. Excitation energies (in MeV) in light nuclei calculated using the NCSM with chiral EFT interactions (NN to N3LO and 3N to N2LO) compared to
experiment [57].
Source: Reprinted with permission from Navratil et al. [57], copyright (2007) by the American Physical Society.

calculations, and to estimate truncation errors from omitted higher-order contributions. These variable-cutoff interactions
reveal the resolution or scale dependence of the first two sources of non-perturbative behavior, which are tamed as high
momenta are decoupled. In free space, the third source of non-perturbative behavior remains independent of the cutoff
because the pole positions of weakly and nearly bound states that necessitate fine tuning are physical observables. However,
this fine tuning is eliminated in themedium at sufficiently high density. In short, a repulsive core is not constrained by phase
shifts and is essentially removedby even amoderately low-momentumcutoff (note the⇤dependence in Fig. 3(b)), the short-
range tensor force is tamed by a sufficiently low cutoff, and the weakly and nearly bound states become perturbative as a
result of Pauli blocking. For cutoffs around 2 fm�1, which preserve phase shifts up to 330 MeV laboratory energy, the Born
series in nuclear matter is well converged at second order in the potential, bringing the nuclear and Coulomb many-body
problems closer together [9].

While evolving a soft potential from higher momentum is a new development in nuclear physics [5,58], attempts to use
soft potentials for nuclear matter were made in the mid sixties and early seventies [47,59]. It had long been observed that
a strongly repulsive core is not resolved until eight times nuclear saturation density [49]. Thus, saturation is not driven
by a hard core (unlike liquid 3He). However, these soft potentials were abandoned because they seemed incapable of
quantitatively reproducing nuclear matter properties. Their requiem was given by Bethe [49]:

‘‘Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high
density. In particular, a substantial tensor force is required.’’

From the EFT perspective, a failure to reproduce nuclear matter observables should not be interpreted as showing that the
low-energy potential is wrong, but that it is incomplete. This misconception still persists and has led to the conclusion that
low-momentum NN interactions are ‘‘wrong’’ because they do not give saturation in nuclear matter and finite nuclei are
overbound for lower cutoffs. The missing physics that invalidates this conclusion is many-body forces.

In a low-energy effective theory, many-body forces are inevitable; the relevant question is how large they are. It is
established beyond doubt that 3N forces are required to describe light nuclei [22–24,57,60,61], as shown, for example, in
Fig. 8. For variable-cutoff potentials, three-body (and higher-body) interactions evolve naturally with the resolution scale.

1.3. Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for calculating low-
energy observables can be captured in the scale-dependent coefficients of operators in a low-energy Hamiltonian [29]. This
principle does not mean that high-energy and low-energy physics is automatically decoupled in every effective theory. In
fact, it implies that we can include as much irrelevant coupling to incorrect high-energy physics as we want by using a
large cutoff, with no consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting the necessary degrees
of freedom. This decoupling can be efficiently achieved by evolving nuclear interactions using RG transformations designed
to handle similar problems in relativistic field theories and critical phenomena in condensed matter systems.6

The general purpose of the RG, when dealing with the large range of scales in physical systems was eloquently explained
by David Gross [63]:

6 For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Without 3N forces same 1+ – 3+ inversion as the famous case in 10B 
 
 
 
 
 
 
 
 
 
 
 
With 3N forces IM-SRG, CCEI both predict incorrect 1+ ground state 
 

With 28Si reference for TNO, correct 3+ ground state predicted 

The Special Case of 22Na 

Stroberg et al., arXiv:1511.03802 

S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 101

Fig. 8. Excitation energies (in MeV) in light nuclei calculated using the NCSM with chiral EFT interactions (NN to N3LO and 3N to N2LO) compared to
experiment [57].
Source: Reprinted with permission from Navratil et al. [57], copyright (2007) by the American Physical Society.

calculations, and to estimate truncation errors from omitted higher-order contributions. These variable-cutoff interactions
reveal the resolution or scale dependence of the first two sources of non-perturbative behavior, which are tamed as high
momenta are decoupled. In free space, the third source of non-perturbative behavior remains independent of the cutoff
because the pole positions of weakly and nearly bound states that necessitate fine tuning are physical observables. However,
this fine tuning is eliminated in themedium at sufficiently high density. In short, a repulsive core is not constrained by phase
shifts and is essentially removedby even amoderately low-momentumcutoff (note the⇤dependence in Fig. 3(b)), the short-
range tensor force is tamed by a sufficiently low cutoff, and the weakly and nearly bound states become perturbative as a
result of Pauli blocking. For cutoffs around 2 fm�1, which preserve phase shifts up to 330 MeV laboratory energy, the Born
series in nuclear matter is well converged at second order in the potential, bringing the nuclear and Coulomb many-body
problems closer together [9].

While evolving a soft potential from higher momentum is a new development in nuclear physics [5,58], attempts to use
soft potentials for nuclear matter were made in the mid sixties and early seventies [47,59]. It had long been observed that
a strongly repulsive core is not resolved until eight times nuclear saturation density [49]. Thus, saturation is not driven
by a hard core (unlike liquid 3He). However, these soft potentials were abandoned because they seemed incapable of
quantitatively reproducing nuclear matter properties. Their requiem was given by Bethe [49]:

‘‘Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high
density. In particular, a substantial tensor force is required.’’

From the EFT perspective, a failure to reproduce nuclear matter observables should not be interpreted as showing that the
low-energy potential is wrong, but that it is incomplete. This misconception still persists and has led to the conclusion that
low-momentum NN interactions are ‘‘wrong’’ because they do not give saturation in nuclear matter and finite nuclei are
overbound for lower cutoffs. The missing physics that invalidates this conclusion is many-body forces.

In a low-energy effective theory, many-body forces are inevitable; the relevant question is how large they are. It is
established beyond doubt that 3N forces are required to describe light nuclei [22–24,57,60,61], as shown, for example, in
Fig. 8. For variable-cutoff potentials, three-body (and higher-body) interactions evolve naturally with the resolution scale.

1.3. Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for calculating low-
energy observables can be captured in the scale-dependent coefficients of operators in a low-energy Hamiltonian [29]. This
principle does not mean that high-energy and low-energy physics is automatically decoupled in every effective theory. In
fact, it implies that we can include as much irrelevant coupling to incorrect high-energy physics as we want by using a
large cutoff, with no consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting the necessary degrees
of freedom. This decoupling can be efficiently achieved by evolving nuclear interactions using RG transformations designed
to handle similar problems in relativistic field theories and critical phenomena in condensed matter systems.6

The general purpose of the RG, when dealing with the large range of scales in physical systems was eloquently explained
by David Gross [63]:

6 For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Ground-state rotational band for well-known deformed nuclei 
 
 
 
 
 
 
 
 
 
 
 
IM-SRG: competitive with phenomenology, good agreement with data 
 

First description of deformation from ab initio methods (trivial in shell model) 

Deformed Systems: 20Ne and 24Mg 
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Ground states in light neon isotopes – clear discrepancies in 20,22Ne 
 
 
 
 
 
 
 
 
 
 

MR-IM-SRG built on spherical reference state 

 

Not expected to produce deformed ground states – not a problem for SM 

Deformation with Large-Space MR-IM-SRG? 

16 18 20 22 24 26 28 30

Mass Number A

-220

-200

-180

-160

-140

-120

E
n

er
g

y
 (

M
eV

)

USDB

NN+3N-ind

NN+3N-full

18 20 22 24 26 28 30

Mass Number A

-240

-220

-200

-180

-160

-140

E
n

er
g

y
 (

M
eV

)

AME 2012

Targeted NO

MR-IM-SRG

NeF

16 18 20 22 24 26 28 30

Mass Number A

-220

-200

-180

-160

-140

-120

E
n

er
g

y
 (

M
eV

)

USDB

NN+3N-ind

NN+3N-full

18 20 22 24

Mass Number A

-200

-180

-160

-140

E
n

er
g

y
 (

M
eV

)

Targeted NO

MR-IM-SRG

NeF



Deformed Systems: 20Ne and 24Mg 
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Ground states in light neon isotopes – clear discrepancies in 20,22Ne 
 
 
 
 
 
 
 
 
 
 

MR-IM-SRG built on spherical reference state 

 

Not expected to produce deformed ground states – not a problem for SM 
 

First (likely spherical) excited 0+ SM state agrees remarkably with MR-IM-SRG 
 

Indicates SM captures physics of deformed ground state 



Magnus expansion: explicitly construct unitary transformation 
 
 

 
Solve flow equation for: 
 
 
 
 

Leads to commutator expression for evolved Hamiltonian 
 
 
 
Nested commutator series – in practice truncate numerically 
 

All calculations truncated at normal-ordered two-body level 

New Approach: Magnus Expansion 
Morris, Parzuchowski, Bogner, PRC (2015) 

H(s) = e⌦(s)He�⌦(s) = H +
1

2
[⌦(s), H] +

1

12
[⌦(s), [⌦(s), H]] + · · ·

d⌦(s)

ds
= ⌘(s) +

1

2
[⌦(s), ⌘(s)] +

1

12
[⌦(s), [⌦(s), ⌘(s)]] + . . .

U(s) = exp⌦(s)



Keep unitary transformation from evolution of Hamiltonian 
 

Can generalize to arbitrary operators: 
 
 
 

 
 
 
 
 

 
Requires normal-ordered operators in J-coupled basis 
 

First application to scalar operators (radii, E0) straightforward 

Ab Initio Effective Valence-Space Operators 

O⇤(s) = e⌦(s)O⇤e�⌦(s) = O⇤ +
1

2
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[⌦(s), [⌦(s), H]] + · · ·



Seldom calculated in nuclear shell model 
In single HO shell: 
 
                                    
 

Must resort to phenomenological gymnastics 
 
IM-SRG: straightforward to calculate effective valence-space operator 
 
 
Commutators induce important higher-order and two-body parts 
 
 
 
 
 

Quantify importance of induced higher-body contributions 

Scalar Operators: E0 Transitions and Radii 

where |hf |⇢E0 |ii|2 / �ij ⇢E0 =
1

e2R

X

i

eir
2
i

⇢E0(s) = e⌦(s)⇢E0e
�⌦(s) = ⇢E0 +

1

2
[⌦(s), ⇢E0 ] + · · ·



Previous SM radii calculations rely on empirical input or as relative to core 
 
 
Calculate absolute radii for all sd-shell nuclei 
 
 
 
 
 
 
 
 
 
 
Full shell model tracks large-space single-reference IMSRG results 

RMS Point Proton Radii in Oxygen 

Stroberg et al., in prep 

R̃2 = UR2U† ⌦
R2

↵
=

D
�0 | R̃2 | �0

E
+
D
�SM | R̃2 | �SM

E



Previous SM radii calculations rely on empirical input or as relative to core 
 
 
Calculate absolute radii for full sd-shell 
 
 
 
 
 
 
 
 
 
 
Initial Hamiltonian deficient – signature of deformation reproduced 

RMS Charge Radii in Neon 

R̃2 = UR2U† ⌦
R2

↵
=

D
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E

Stroberg et al., in prep 



First results for effective valence-space tensor operators 
Convergence of quadrupole moments 
 
 
 
 
 
 
 
 
 
 
 

Tensor Operators: Quadrupole Moments 



First results for effective valence-space tensor operators 
Convergence of quadrupole moments 
 
 
 
 
 
 
 
 
 
 
 
Large effect from renormalized 1-body part 
 

emax=12,14 uderway 

Tensor Operators: Quadrupole Moments 



First results for effective valence-space tensor operators 
Convergence of quadrupole moments 
 
 
 
 
 
 
 
 
 
 
 
Largest effect from renormalized 1-body part, 2-body minimal change 
 

emax=12,14 uderway 

Tensor Operators: Quadrupole Moments 

Stroberg et al., in prep 



First results for effective valence-space tensor operators 
Convergence of magnetic moments 
 
 
 
 
 
 
 
 
 
 
 

Tensor Operators: Magnetic Moments 



First results for effective valence-space tensor operators 
Convergence of magnetic moments 
 
 
 
 
 
 
 
 
 
 
 
Renormalized 1-body gives significant effect 

Tensor Operators: Magnetic Moments 



First results for effective valence-space tensor operators 
Convergence of magnetic moments 
 
 
 
 
 
 
 
 
 
 
 
Renormalized 1-body gives significant effect 
 

2-body part non-negligible 

Tensor Operators: Magnetic Moments 

Stroberg et al., in prep 



Calculate ab initio EM moments for all sd-shell nuclei 
Compare with phenomenological USDB: quenching and effective charges 
 
 
 
 
 
 
 
 
 
Modest effect from renormalized effective operator 
 

Magnetic moments agree with data and USDB (missing current corrections) 
 

Electric quadrupole moments more problematic 

Ab Initio EM Moments 

Stroberg et al., in prep 



Calculate ab initio EM transition rates for full sd shell 
Compare with phenomenological USDB: quenching and effective charges  
 
 
 
 
 
 
 
 
 
Modest effect from renormalized effective operator 
 

Magnetic moments agree with data and USDB (missing current corrections) 
 

Electric quadrupole moments more problematic 

Ab Initio EM Transition Rates 

Stroberg et al., in prep 
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Ab initio valence-shell Hamiltonians 
  Towards full sd- and pf-shells 
  Implement extended valence spaces 
 

 
 

New Directions and Outlook 
Fundamental symmetries 
   Effective electroweak operators 
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   ab initio calculation of  0νββ decay 

Heavier semi-magic chains: MBPT as guide 
 

Ab initio valence-shell Hamiltonians 
  Towards full sd- and pf-shells 
  Implement extended valence spaces 
 

Moving beyond stability 
  Include continuum effects 
  Map sd- and pf-shell driplines? 
   
 

 
 

New Directions and Outlook 
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0νββ )−1 =G0ν (Qββ ,Z)M0ν
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