Ab Initio Interactions and Operators for the sd Valence-Space

NSERC CRSNG

DARMSTADT

A. Schwenk

Nucleus strongly interacting many-body system -A-body problem impossible $H\psi_n = E_n\psi_n$

Quasi-exact solutions in light nuclei (GFMC, (IT)NCSM, ...)

Large space: controlled approximations to full Schrödinger Equation

Limited range:

Closed shell ± 1

Even-even

Limited properties: Ground states only Some excited state

Coupled Cluster In-Medium SRG Green's Function

Nucleus strongly interacting many-body system -A-body problem impossible $H\psi_n=E_n\psi_n$

Quasi-exact solutions in light nuclei (GFMC, (IT)NCSM, ...)

Large space: controlled approximations to full Schrödinger Equation Valence space: diagonalize exactly with reduced number of degrees of freedom

Large-space approach

Limited range: Closed shell ±1 Even-even

Limited properties: Ground states only Some excited state

Coupled Cluster In-Medium SRG Green's Function Valence-space approach

All nuclei near closed-shell cores

All properties: Ground states Excited states EW transitions

Coupled Cluster In-Medium SRG Perturbation Theory

Nucleus strongly interacting many-body system -A-body problem impossible $H\psi_n=E_n\psi_n$

Quasi-exact solutions in light nuclei (GFMC, (IT)NCSM, ...)

Large space: controlled approximations to full Schrödinger Equation Valence space: diagonalize exactly with reduced number of degrees of freedom

Valence-space approach

All nuclei near closed-shell cores

All properties: Ground states Excited states EW transitions

Coupled Cluster In-Medium SRG Perturbation Theory

Nucleus strongly interacting many-body system -A-body problem impossible $H\psi_n=E_n\psi_n$

Quasi-exact solutions in light nuclei (GFMC, (IT)NCSM, ...)

Large space: controlled approximations to full Schrödinger Equation Valence space: diagonalize exactly with reduced number of degrees of freedom

Valence-space approach

All nuclei near closed-shell cores

All properties: Ground states Excited states EW transitions

Coupled Cluster In-Medium SRG Perturbation Theory

In-Medium Similarity Renormalization Group

Continuous unitary trans (basis change) decouples "off-diagonal" physics $H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$

Interaction in new basis is simple

 $H^{\text{od}} = \langle p|H|h\rangle + \langle pp|H|hh\rangle + \dots + \text{h.c.}$

Tsukiyama, **Bogner**, Schwenk, PRL (2011)

IM-SRG for Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Separate *p* states into valence states (v) and those above valence space (q)

Redefine *H*^{od} to **decouple valence space from excitations** outside *v*

IM-SRG for Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Separate *p* states into valence states (v) and those above valence space (q)

Redefine *H*^{od} to **decouple valence space from excitations** outside *v*

$$H^{\text{od}} = \langle p|H|h\rangle + \langle pp|H|hh\rangle + \langle v|H|q\rangle + \langle pq|H|vv\rangle + \langle pp|H|hv\rangle + \text{h.c.}$$

Core Energy Single-particle energies Two-body valence particle interaction matrix elements

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Ground-State Energies in Oxygen Isotopes

Large/valence-space methods with same SRG-evolved NN+3N-ind forces

Agreement between all methods with same input forces No reproduction of oxygen dripline in any case

Ground-State Energies in Oxygen Isotopes

Large/valence-space methods with same SRG-evolved NN+3N-full forces

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

Agreement between all methods with same input forces

Clear improvement with NN+3N-full

Still significant discrepancy between valence/large-space results

How Do We Handle 3N Forces?

Normal-ordered 3N: contribution from core with valence particles

Neglect 3N forces between valence nucleons

3N Forces in Valence Space

Normal-ordered 3N: contribution from core with valence particles

Neglect 3N forces between valence nucleons – significant as $N_v \sim N_c$

Targeted Normal Ordering

Normal-ordered 3N: contribution from core with valence particles

Neglect 3N forces between valence nucleons – significant as $N_v \sim N_c$ Capture these effects with new Targeted N.O.

Initial N.O. wrt **nearest closed shell** Still decouple standard *sd* valence space

Ground-State Energies in Oxygen Isotopes

Large/valence-space methods with same SRG-evolved NN+3N-full forces

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

Agreement between all methods with same input forces

Clear improvement with NN+3N-full

Still significant discrepancy between valence/large-space results

Targeted N.O. in Oxygen Isotopes

Large/valence-space methods with same SRG-evolved NN+3N-full forces

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

Improved method to capture neglected 3N forces in valence space "Targeted" N.O. results agree well with data and large-scale methods

Beyond Semi-Magic: Ground States of F/Ne

IM-SRG valence-space results for fully open F/Ne isotopes

Stroberg et al., arXiv:1511.03802

NN+3N-full improves agreement with experiment; overbound past N=14

Beyond Semi-Magic: Ground-States of F/Ne

IM-SRG valence-space results for fully open F/Ne isotopes

Stroberg et al., arXiv:1511.03802

NN+3N-full improves agreement with experiment; overbound past N=14 Targeted N.O. results further improved – similar to phenomenology

Beyond Semi-Magic: Ground-States of F/Ne

IM-SRG valence-space results for fully open F/Ne isotopes

Stroberg et al., arXiv:1511.03802

NN+3N-full improves agreement with experiment; overbound past N=14 Targeted N.O. results further improved – similar to phenomenology Good agreement with large-space ab initio SCGF and MR-IM-SRG!

Ground States from Oxygen to Calcium

3N force effects significant as N_v becomes large

Targeted N.O. valence-space results agrees with large-space in most cases!

Ground States from Oxygen to Calcium

3N force effects significant as N_v becomes large

Targeted N.O. valence-space results agrees with large-space in most cases! ²⁸Si not good closed shell (single ref. calculation incorrect) Discrepancy with experiment from initial nuclear interactions

Comparison with MBPT/CCEI Oxygen Spectra

Neutron-rich oxygen spectra from existing shell-model approaches

MBPT in extended valence space

IM-SRG/CCEI spectra agree within ~300 keV

Doubly Open Shell: Neutron-Rich F Spectra

Fluorine spectroscopy: NN+3N-ind and NN+3N-full, Full CC

Stroberg et al., arXiv:1511.03802

IM-SRG: competitive with phenomenology, good agreement with data

Doubly Open Shell: Neutron-Rich Ne Spectra

Neon spectroscopy: NN+3N-ind and NN+3N-full

Stroberg et al., arXiv:1511.03802

IM-SRG: competitive with phenomenology, good agreement with data

The Special Case of ²²Na

Without 3N forces same $1^+ - 3^+$ inversion as the famous case in ${}^{10}B$

With 3N forces IM-SRG, CCEI both predict incorrect 1⁺ ground state

The Special Case of ²²Na

Without 3N forces same $1^+ - 3^+$ inversion as the famous case in ${}^{10}B$

With 3N forces IM-SRG, CCEI both predict incorrect 1^+ ground state With ²⁸Si reference for TNO, correct 3^+ ground state predicted

Deformed Systems: ²⁰Ne and ²⁴Mg

Ground-state rotational band for well-known deformed nuclei

Stroberg et al., arXiv:1511.03802

IM-SRG: **competitive with phenomenology**, good agreement with data First description of deformation from ab initio methods (trivial in shell model)

Deformation with Large-Space MR-IM-SRG?

Ground states in light neon isotopes – clear discrepancies in 20,22 Ne

MR-IM-SRG built on spherical reference state

Not expected to produce deformed ground states – not a problem for SM

Deformed Systems: ²⁰Ne and ²⁴Mg

Ground states in light neon isotopes – clear discrepancies in ^{20,22}Ne

MR-IM-SRG built on spherical reference state

Not expected to produce deformed ground states – not a problem for SM First (likely spherical) excited 0⁺ SM state agrees remarkably with MR-IM-SRG Indicates SM captures physics of deformed ground state

New Approach: Magnus Expansion

Morris, Parzuchowski, Bogner, PRC (2015)

Magnus expansion: *explicitly* construct unitary transformation

 $U(s) = \exp \Omega(s)$

Solve flow equation for:

$$\frac{\mathrm{d}\Omega(s)}{\mathrm{d}s} = \eta(s) + \frac{1}{2} \left[\Omega(s), \eta(s)\right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), \eta(s)\right]\right] + \dots$$

Leads to commutator expression for evolved Hamiltonian

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)} = H + \frac{1}{2} \left[\Omega(s), H \right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), H \right] \right] + \cdots$$

Nested commutator series – in practice truncate numerically

All calculations truncated at normal-ordered two-body level

Ab Initio Effective Valence-Space Operators

Keep unitary transformation from evolution of Hamiltonian

Can generalize to arbitrary operators:

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)} = H + \frac{1}{2} \left[\Omega(s), H \right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), H \right] \right] + \cdots$$
$$\mathcal{O}^{\Lambda}(s) = e^{\Omega(s)} \mathcal{O}^{\Lambda} e^{-\Omega(s)} = \mathcal{O}^{\Lambda} + \frac{1}{2} \left[\Omega(s), \mathcal{O}^{\Lambda} \right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), \mathcal{O}^{\Lambda} \right] \right] + \cdots$$

Requires normal-ordered operators in J-coupled basis First application to scalar operators (radii, E0) straightforward

Scalar Operators: E0 Transitions and Radii

Seldom calculated in nuclear shell model In single HO shell:

$$|\langle f | \rho_{E0} | i \rangle|^2 \propto \delta_{ij} \text{ where } \rho_{E0} = \frac{1}{e^2 R} \sum_i e_i r_i^2$$

Must resort to phenomenological gymnastics

IM-SRG: straightforward to calculate effective valence-space operator

$$\rho_{E0}(s) = e^{\Omega(s)} \rho_{E0} e^{-\Omega(s)} = \rho_{E0} + \frac{1}{2} \left[\Omega(s), \rho_{E0} \right] + \cdots$$

Commutators induce important higher-order and two-body parts

$$\frac{1}{\mathcal{P}} + \frac{1}{\Omega} \mathcal{P} + \frac{1}{\Omega} + \dots$$

Quantify importance of induced higher-body contributions

RMS Point Proton Radii in Oxygen

Previous SM radii calculations rely on empirical input or as relative to core

$$\tilde{R}^2 = UR^2 U^{\dagger} \quad \left\langle R^2 \right\rangle = \left\langle \Phi_0 \mid \tilde{R}^2 \mid \Phi_0 \right\rangle + \left\langle \Phi_{\rm SM} \mid \tilde{R}^2 \mid \Phi_{\rm SM} \right\rangle$$

Calculate absolute radii for all sd-shell nuclei

Full shell model tracks large-space single-reference IMSRG results

RMS Charge Radii in Neon

Previous SM radii calculations rely on empirical input or as relative to core

$$\tilde{R}^2 = UR^2 U^{\dagger} \quad \left\langle R^2 \right\rangle = \left\langle \Phi_0 \mid \tilde{R}^2 \mid \Phi_0 \right\rangle + \left\langle \Phi_{\rm SM} \mid \tilde{R}^2 \mid \Phi_{\rm SM} \right\rangle$$

Calculate absolute radii for full sd-shell

Initial Hamiltonian deficient – signature of deformation reproduced

Tensor Operators: Quadrupole Moments

First results for effective valence-space tensor operators

Convergence of quadrupole moments

Tensor Operators: Quadrupole Moments

First results for effective valence-space tensor operators

Convergence of quadrupole moments

Large effect from renormalized 1-body part emax=12,14 uderway

Tensor Operators: Quadrupole Moments

First results for effective valence-space tensor operators

Convergence of quadrupole moments

Largest effect from renormalized 1-body part, 2-body minimal change emax=12,14 uderway

Tensor Operators: Magnetic Moments

First results for effective valence-space tensor operators

Convergence of magnetic moments

Tensor Operators: Magnetic Moments

First results for effective valence-space tensor operators

Convergence of magnetic moments

Renormalized 1-body gives significant effect

Tensor Operators: Magnetic Moments

First results for effective valence-space tensor operators

Convergence of magnetic moments

Renormalized 1-body gives significant effect 2-body part non-negligible

Ab Initio EM Moments

Calculate ab initio EM moments for all sd-shell nuclei

Compare with phenomenological USDB: quenching and effective charges

Stroberg et al., in prep

Modest effect from renormalized effective operator

Magnetic moments agree with data and USDB (missing current corrections) Electric quadrupole moments more problematic

Ab Initio EM Transition Rates

Calculate ab initio EM transition rates for full sd shell

Compare with phenomenological USDB: quenching and effective charges

Stroberg et al., in prep

Modest effect from renormalized effective operator

Magnetic moments agree with data and USDB (missing current corrections) Electric quadrupole moments more problematic

New Directions and Outlook

New Directions and Outlook

New Directions and Outlook

Heavier semi-magic chains: MBPT as guide

Ab initio valence-shell Hamiltonians

Towards full sd- and pf-shells Implement extended valence spaces

Moving beyond stability

Include continuum effects Map sd- and pf-shell driplines? **Fundamental symmetries**

Effective electroweak operators ab initio calculation of $0\nu\beta\beta$ decay

