Exploring the continuum proton and neutron rich on the way to FAIR

FUSTIPEN

... ab initio approaches for 2020

Caen, France October 4th-11th, 2015

Ankunft eines Schwergewichts

Novel Neutron Detector: NeuLAND

Experimental equipment on the way ...

- NeuLAND demonstrator (40 cm depth with only 4 double planes and 800 readout channels) at RIKEN up to end of 2017, participation in various beam times
- at GSI continuation of production (4 more double planes ready), production scheme dominated by funding profile, 11-15 out of 30 d.p. in 2018

... e.g. to RIKEN Back to GSI Q4/2017

R³B Status Report

RIKEN: "Performance studies for the prototype"

Efficiency evaluations in progress ... not only ;o)

J. Kahlbow/TUDA

R³B Status Report

At the boundaries: Three body systems

			0										I								
				(¹⁵ Ne unbound	¹⁶ Ne unbound	¹⁷ Ne 109,2 ms	¹⁹ Ne 2,672 s	¹⁹ Ne 17,22 s	²⁰ Ne	²¹ Ne	²² Ne				Nucle	ear Ph	ysics	News	24 (20	014) 5
					¹⁴ F unbound	15F unbound	¹⁶ F unbound	¹⁷ F 64.8 s	¹⁸ F 109.7 m	¹⁹ F	²⁰ F 11 s	²¹ F 4.16 s	²² F 4.23 s	²³ F ^{2.23 s}	²⁴ F _{0.39 s}	25F 80 ms	26F 9.7 ms	²⁷ F 5.0 ms	²⁸ F unbound	²⁹ F 2.5 ms	³⁰ F unbound
				12O unbound	13 <mark>0</mark> 8.58 ms	14O 70.6 s	15 <mark>0</mark> 2.03 m	¹⁶ O	170	¹⁸ O	¹⁹ O 27.1 s	20O 13.5 s	21O 3.42 s	22O 2.25 s	23O 97 ms	24O 65 ms	25O unbound	26O unbound	27O unbound	280 unbound	
Z			¹⁰ N unbound	¹¹ N unbound	¹² N ^{20.4 m}	¹³ N _{20.4 m}	¹⁴ N	¹⁵ N	16N 7.13 s	17N 4.17 s	¹⁸ N _{0.63 s}	¹⁹ N 329 ms	²⁰ N 136 ms	²¹ N ^{83 ms}	²² N _{20 ms}	²³ N 14.5 ms	²⁴ N unbound	²⁵ N unbound			
		⁸ C unbound	⁹ С 125 ms	10C 19.3 s	11 20.4 m	¹² C	¹³ C	¹⁴ С 5730 у	15 <u>С</u> 2.45 s	16С 0.747 s	17C 193 ms	18C 92 ms	19C 49 ms	20C 14 ms	²¹ C unbound	22C 6.1 ms					
		⁷ B unbound	⁸ B 770 ms	⁹ B unbound	¹⁰ B	¹¹ B	¹² B 20.20 ms	13B 17.33 ms	¹⁴ B 13.8 ms	15B 10.4 ms	16B unbound	17 B 5.1 ms	¹⁸ B unbound	¹⁹ B 2.9 ms	²⁰ B unbound	²¹ B unbound					
		⁶ Be unbound	⁷ Be	⁸ Be unbound	⁹ Be	¹⁰ Be 1.6 10 ⁶ y	¹¹ Be ^{13.8} s	¹² Be 22.6 ms	¹³ Be unbound	¹⁴ Be 4.35 ms	¹⁵ Be unbound	¹⁶ Be unbound	¹⁷ Be unbound	¹⁸ Be unbound							
	⁴ Li unbound	⁵ Li unbound	⁶ Li	⁷ Li	⁸ Li ^{840 ms}	⁹ Li ^{179 m}	¹⁰ Li unbound	¹¹ Li ^{8.5 ms}	¹² Li urbound	¹³ Li unbound									n		\mathbf{Y}
² He unbound	³ He	⁴ He	⁵ He unbound	⁶ He ^{808 ms}	⁷ He unbound	8 H 119 ms	⁹ He unbound	¹⁰ He unbound			• (avalution of) nuclear										
$^{1}\mathrm{H}$	² H	³ Н 12.323 у	⁴ H unbound	⁵ H unbound	⁶ H unbound	⁷ H unbound					structure at the extremes										
	n 10.25 m						N				• clu • rel	ister iable	ed s e cor	syste ntinu	ems, ium	OQ spe	S ctros	scop	⇒>> y		

Menu

- Breakup Experiments at high energy

 knockout, QFS p-scattering, Coulex
- 2. Methods
- 3. Proton rich systems: ¹⁵⁻¹⁷Ne -across the proton dripline
- 4. Prospects/plans with new instruments
- 5. Summary

GSI accelerator facility ...

R³B/LAND Setup (kinematically complete)

Intermediate system tells g.s. properties (n or p knockout reaction)

Sensitive observable: Momentum profile & spectroscopy

Transverse momentum Distribution of ¹⁰Li (missing momentum)

Decomposition and position of s and p confirmed!

similar result with energy dependent angular correlations

PLB718 (2013) 1309

10

2n-Model WF in ¹¹Li fit to all existing data → direct comparison to theory predictions

GSI Helmholtzzentrum für Schwerionenforschung GmbH

¹⁷Ne a potential 2p halo

"¹⁷Ne is a proton-dripline nucleus, with strong indications of having a 2p – halo"

tri

Zhukov & Thompson, PRC 52 (1995) 3505

W. Geithner, T.Neff et al, PRL 101 252502 (2008)

- S_{2p} = 943 keV, S_p = 1479 keV
- $T_{1/2}^{-r}$ = 109.2 ms (β^+ to ${}^{17}F$)

15**O**

¹⁷Ne

• Groundstate $J^{\pi}=1/2^{-}$; no bound exc. states

Looking for halo signatures

Large fraction of the valence protons in the classically forbidden region ?

Coulomb wall in addition to angular momentum barrier (s,d)... → search for strong s² configuration

- Grigorenko et al., PRC 71 (2005) 051604(R).
 ≫3-body cluster model: s² content 48%.
- Geithner&Neff et al., PRL 101 (2008) 252502.
 Charge radius measurement + FMD: 42% s².
- Tanaka et al., PRC 82 (2010) 044309.
 Reaction cross-sections: Long tail in ¹⁷Ne matter density, dominant s² configuration.
- Oishi et al., PRC 82 (2010) 024315.
 >3-body model: s² content 15%.

One-proton knockout from ¹⁷Ne – ¹⁶F relative energy Spectrum

F. Wamers

knockout from valence protons

Halo-Proton Knockout from ¹⁷Ne: ¹⁶F (=¹⁵O+p) Transverse Momentum Distribution

F. Wamers

Glauber-type calculation (MOMDIS): 1s/0d single-particle p-removal from ¹⁶F+p *Bertulani et al., CPC 175 (2006) 372*

• s-wave c ont ents ~40% in the ¹⁷Ne halo

(p_x: 39.6±1.1 %, p_y: 40.4±1.1 %)

- Moderate halo character of ¹⁷Ne confirmed
- Good agreement with Grigorenko et al., and with Geithner/Neff et al.

Momentum Profile (¹⁶F)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Momentum Profile (¹⁶F) a different view

MOMDIS calculation for Rrel dependent width

RMS (E)= w_{s} (E) * RMS $_{s}$ ^{theo} (E) + w_{d} (E) * RMS $_{d}$ ^{theo} (E)

 w_s , w_d from fit to relative energy spectrum for the respective energy bins.

- Consistent description in peak region
- Ambiguities for high and low part of energyspectrum (e.g. in the presence of nonresonant bg. !
- Clear Advantages using momentum profile method

Crossing the Proton Dripline to ¹⁵Ne

F. Wamers

Two-neutron Knockout

¹³O + 2 proton FSI

- → ¹⁵Ne 3-body relativeenergy spectrum
- → 3-body angular correlations

First Observation and spectroscopy of ¹⁵Ne

GSI Helmholtzzentrum für Schwerionenforschung GmbH

H.T. Fortune, Phys. Lett. B 718, 1342 (2013)

P_{f-nn}

- Reduction (CMS, E^{*}, rot. inv) 9 variables \rightarrow 2 variables (ϵ, θ)
 - ε is the fractional energy for a subsystem (e.g. $ε = E_{nn}/E_{nnf}$)
 - θ is the angle between the relative momenta (e.g. p_{nn} , p_{f-nn})
- Three body correlation function (expansion in hyperspherical harm.):

$$\mathsf{W}(arepsilon, heta) \propto rac{d^2\sigma}{darepsilon d heta d heta} \propto \sum_{lpha,lpha'} C^{\dagger}_{lpha'} C_{lpha} \, \mathcal{Y}^{\dagger}_{lpha'}(arepsilon, heta) \mathcal{Y}_{lpha}(arepsilon, heta)$$

• Complex coefficients C depend on quantum numbers $\alpha = \{K, L, S, I_X, I_Y\}$

GSI Helmholtzzentrum für Schwerionenforschung GmbH M.Meister, L.V. Chulkov, H.S., et al., PRL91 (2003) 165294

Characterization of the decays

F. Wamers et al., PRL 112, 132502 (2014)

Calculation of ¹⁵Ne sequential decay via the ¹⁴F ground state

¹⁵Ne decay shows a genuine 3-body character, despite intermediate states in ¹⁴F.

EPJ A Highlight - Mechanisms of two-proton emission seen in three-body correlations

J. Marganiec et al., EPJ A (2015) 51: 9

Published on Tuesday, 10 February 2015 16:14

Sequential two-proton decay of the ¹⁶Ne E_r=7.57 MeV state. The fractional energy distribution (left) gives resonance energy in ¹⁵F while the angular distribution (right) determines I^{π} of the initial state. Hitherto three-body correlations between decay products of nuclear resonances, unstable to the emission of two neutrons have been a very effective tool in the analysis of GSI-experiments on ⁵H, ¹⁰He, ¹³Li, and ¹⁴Be. Here the first report is given about the mechanisms for two-proton emission from states in ¹⁶Ne, representing the presently most complete study of this nucleus. One-neutron knockout from ¹⁷Ne populated the ¹⁶Ne(g.s.) (E_r=1.39 MeV, Γ =0.08 MeV) above the ¹⁴O+p+p threshold, and resonances at E_r=3.22 MeV and 7.57 MeV. The

decay mechanisms were revealed analysing three-body energy correlations in the ¹⁴O+p+p system. It was found that the ¹⁶Ne(g.s.) undergoes a democratic three-body decay. In contrast to this, the ¹⁶Ne(21+) state emits protons through the ¹⁵F(g.s.) sequentially. The decay of 7.57 MeV state is well-described assuming emission of a proton from the d_{5/2} shell to ¹⁵F(5/2⁺), which decays by d_{5/2} proton emission to ¹⁴O(g.s.). By using R-matrix analysis and mirror symmetry this state was unambiguously identified as the third 2⁺ state in ¹⁶Ne.

¹⁶Ne relative energy spectrum

F. Wamers et al., PRL 112, 132502 (2014)

[11] G.J. KeKelis et al., Phys.
Rev. C 17, 1929 (1978).
[12] G.R. Burleson et al., Phys.
Rev. C 22, 1180 (1980).
[13] C.J. Woodward, R.E. Tribble and D.M. Tanner,
Phys. Rev. C 27, 27 (1983).
[14] K. Föhl et al., Phys. Rev.
Lett. 79, 3849 (1997).
[15] I. Mukha et al., Phys. Rev. C 79, 061301(R) (2009)

Confirmation of previous results. Narrow width for 1st and 2nd excited state.

K.W. Brown et al, Phys.Rev.Lett. 113, 232501 (2014) gs. Er=1.476(20) Γ<80keV "width puzzle"

The quest for the ¹⁷Ne Halo – Looking for soft dipole modes ...

Summary / Outlook

- Nuclear systems at the extremes cleanly produced and analyzed
- Largest neutron/proton asymmetries
- Rôle of seed nuclei discussed, correlations analyzed
- Frontier line: Oxygen isotopes

New Detectors → better sensitivity
New facilities → higher intensity

→ f + n + n + n + n (e.g. ⁷H) in reach

Short Spec.: Bℓ = 4.8 Tm Opening angle: 80 mrad 20 mT field @ target position

GSI Helmholtzzentrum für Schwerionenforschung GmbH NUSTAR Week Warsaw 2015

R³B Schedule and first experiments

- 2014 Installation of 20% detectors NeuLAND and CALIFA Commissioning run in Q3/2014
- 2015/16 Construction and installation of detector components
- 2017/18 Commissioning of full R3B setup (Cave C)
- 2018-202x Physics runs at GSI (Cave C) (phase 0)
- 202x-202x+1 Move to High-Energy Branch building
- 202x+1 \rightarrow Commissioning and first experiments at Super-FRS (phase 1)

Experiments will make use of uniqueness of R³B:

- Reactions at high beam energies up to 1 GeV/nucleon
- Tracking and identification capability even for the heaviest ions
- Multi-neutron tracking capability, high-efficiency calorimeter
- Experiments possible for the first time:
- 4 neutron decays beyond the drip-line and for heavier n-rich isotopes
- Kinematically complete measurements of quasi-free nucleon knockout reactions
- Electric dipole and quadrupole response of Sn nuclei beyond N=82, and of neutron-rich Pb isotopes (polarizability, symmetry energy)
- fission barriers from (p,2p) reactions (\rightarrow r-process)

Dipole strength Distributions in heavy neutron-rich nuclei

S. Bacca et al. PRL **89** (2002) 052502 PRC **69** (2004) 05700²

access to EoS (e.g. neutron star) & low lying E1 strength (r-process)

The magnet ready ... for travel

 Production (and revision) finalized. FAT passed 23.9.2015

➔ "Test bench" operation➔ Preparation for FAIR

August 2015

Transport to GSI November 2015 SATa Test Q1/2016 Installation Cave-C Q2/2016 Operation ready Q1 /2017

eptember 2

GLAD has arrived and is being installed in Cave-C

- Power supply there and tested
- Crypo plant installed and tested
- Magnet has arrived and passed first series of SAT tests
- non conformity in the exit flange mitigation in progress
- in-kind contracts with F/D in preparation

- 04/2016 installation of instrumentation and MSS/MCS by CEA
- End 2016 to get magnet into operation!

R³B Status Report

January 20

Next Step: The new FAIR facility

Intensity increase 3-4 orders of magnitude !

The Halo Collaboration

Y. Aksyutina, T. Aumann, H. Álvarez-Pol, T. LeBleis, E. Benjamim, J. Benlliure, K. Boretzky, M.J.G. Borge, C. Caesar, M.Caamaño, E. Casarejos, L.V. Chulkov, D. Cortina-Gil, K. Epinger, Th. W. Elze, H. Emling, C. Forssén, H. Geissel, R. Gernhäuser, M. Hellström, J. Holeczek, K.L. Jones, H. Johansson, B. Jonson, J.V. Kratz, R. Krücken, R. Kulessa, C.Langer, M. Lantz, Y. Leifels, A. Lindahl, K. Mahata, M. Meister, P. Maierbeck, K. Markenroth, G. Münzenberg, T. Nilsson, C. Nociforo, G. Nyman, R. Palit, M. Pantea, S. Paschalis, D.Pérez, M. Pfützner, V. Pribora, A. Prochazka, R. Reifarth, A. Richter, K. Riisager, C. Rodríguez, C. Scheidenberger, G. Schrieder, H. Simon, J. Stroth, K. Sümmerer, O. Tengblad, H. Weick, and M.V. Zhukov.

GSI, Darmstadt, Germany; Instito Estructura de la Materia, Madrid, Spain Kurchatov Institute, Moscow, Russia; Johann-Wolfgang- Goethe-Univ., Frankfurt, Germany; Chalmers Tekniska Högskola / Göteborgs Universitet, Göteborg, Sweden; Johannes-Gutenberg-Universität, Mainz, Germany; Universytet Jagiellonski, Kraków, Poland; University Santiago de Compostela, Spain; Technische Universität, Darmstadt, Germany; Technische Universität, München, Germany; CERN, Genève, Switzerland; Aarhus Universitet, Aarhus, Denmark

Aksouh, Farouk; Al-Khalili, Jim; Algora, Alejandro; Alkhasov, Georgij; Altstadt, Sebastian; Alvarez, Hector; Atar, Leyla; Audouin, Laurent; Aumann, Thomas; Pellereau, Eric; Martin, Julie-Fiona; Gorbinet, Thomas; Seddon, Dave; Kogimtzis, Mos; Avdeichikov, Vladimir; Barton, Charles; Bayram, Murat; Belier, Gilbert; Bemmerer, Daniel; Michael Bendel; Benlliure, Jose; Bertulani, Carlos; Bhattacharya, Sudeb; Bhattacharya, Chandana; Le Bleis, Tudi; Boilley, David; Boretzky, Konstanze; Borge, Maria Jose; Botvina, Alexander; Boudard, Alain; Boutoux, Guillaume; Boehmer, Michael; Caesar, Christoph; Calvino, Francisco; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Cederwall, Bo; Chapman, Robert; Alexandre Charpy; Chartier, Marielle; Chatillon, Audrey; Chen, Ruofu; Christophe, Mayri; Chulkov, Leonid; Coleman-Smith, Patrick; Cortina, Dolores; Crespo, Raquel; Csatlos, Margit; Cullen, David; Czech, Bronislaw; Danilin, Boris; Davinson, Tom; Paloma Diaz; Dillmann, Iris; Fernandez Dominguez, Beatriz; Ducret, Jean-Eric; Duran, Ignacio; Egelhof, Peter; Elekes, Zoltan; Emling, Hans; Enders, Joachim; Eremin, Vladimir; Ershov, Sergey N.; Ershova, Olga; Eronen, Simo; Estrade, Alfredo; Faestermann, Thomas; Fedorov, Dmitri; Feldmeier, Hans; Le Fevre, Arnaud; Fomichev, Andrey; Forssen, Christian; Freeman, Sean; Freer, Martin; Friese, Juergen; Fynbo, Hans; Gacsi, Zoltan; Garrido, Eduardo; Gasparic, Igor; Gastineau, Bernard; Geissel, Hans; Gelletly, William; Genolini, B.; Gerl, Juergen; Gernhaeuser, Roman; Golovkov, Mikhail; Golubev, Pavel; Grant, Alan; Grigorenko, Leonid; Grosse, Eckart; Gulyas, Janos; Goebel, Kathrin; Gorska, Magdalena; Haas, Oliver Sebastian; Haiduc, Maria; Hasegan, Dumitru; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Ana Henrigues; Hoffmann, Jan; Holl, Matthias; Hunyadi, Matyas; Ignatov, Alexander; Ignatyuk, Anatoly V.; Ilie, Cherciu Madalin; Isaak, Johann; Isaksson, Lennart; Jakobsson, Bo; Jensen, Aksel; Johansen, Jacob; Johansson, Hakan; Johnson, Ron; Jonson, Bjoern; Junghans, Arnd; Jurado, Beatriz; Jaehrling, Simon; Kailas, S.; Kalantar, Nasser; Kalliopuska, Juha; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Kezzar, Khalid; Khanzadeev, Alexei; Kissel, Robert; Kisselev, Oleg; Klimkiewicz, Adam; Kmiecik, Maria; Koerper, Daniel; Kojouharov, Ivan; Korsheninnikov, Alexei; Korten, Wolfram; Krasznahorkay, Attila; Kratz, Jens Volker; Kresan, Dima; Anatoli Krivchitch; Kroell, Thorsten; Krupko, Sergey; Kruecken, Reiner; Kulessa, Reinhard; Kurz, Nikolaus; Kuzmin, Eugenii; Labiche, Marc; Langanke, Karl-Heinz; Langer, Christoph; Lapoux, Valerie; Larsson, Kristian; Laurent, Benoit; Lazarus, Ian; Le, Xuan Chung; Leifels, Yvonne; Lemmon, Roy; Lenske, Horst; Lepine-Szily, Alinka; Leray, Sylvie; Letts, Simon; Li, Songlin; Liang, Xiaoying; Lindberg, Simon; Lindsay, Scott; Litvinov, Yuri; Lukasik, Jerzy; Loeher, Bastian; Mahata, Kripamay; Maj, Adam; Marganiec, Justyna; Meister, Mikael; Mittig, Wolfgang; Movsesvan, Alina; Mutterer, Manfred; Muentz, Christian; Nacher, Enrique; Najafi, Ali; Nakamura, Takashi; Neff, Thomas; Nilsson, Thomas; Nociforo, Chiara; Nolan, Paul; Nolen, Jerry; Nyman, Goran; Obertelli, Alexandre; Obradors, Diego; Ogloblin, Aleksey; Oi, Makito; Palit, Rudrajyoti; Panin, Valerii; Paradela, Carlos; Paschalis, Stefanos; Pawlowski, Piotr; Petri, Marina; Pietralla, Norbert; Pietras, Ben; Pietri, Stephane; Plag, Ralf; Podolyak, Zsolt; Pollacco, Emanuel; Potlog, Mihai; Datta Pramanik, Ushasi; Prasad, Rajeshwari; Fraile Prieto, Luis Mario; Pucknell, Vic; Galaviz -Redondo, Daniel; Regan, Patrick; Reifarth, Rene; Reinhardt, Tobias; Reiter, Peter; Reimund, Fanny; Ricciardi, Maria Valentina; Richter, Achim; Rigollet, Catherine; Riisager, Karsten; Rodin, Alexander; Rossi, Dominic; Roussel-Chomaz, Patricia; Gonzalez Rozas, Yago; Rubio, Berta; Roeder, Marko; Saito, Takehiko; Salsac, Marie-Delphine; Rodriguez Sanchez, Jose Luis; Santosh, Chakraborty; Savajols, Herve; Savran, Deniz; Scheit, Heiko; Schindler, Fabia; Schmidt, Karl-Heinz; Schmitt, Christelle; Schnorrenberger, Linda; Schrieder, Gerhard; Schrock, Philipp; Sharma, Manoj Kumar; Sherrill, Bradley; Shrivastava, Aradhana; Shulgina, Natalia; Sidorchuk, Sergey; Silva, Joel; Simenel, Cedric; Simon, Haik; Simpson, John; Singh, Pushpendra Pal; Sonnabend, Kerstin; Spohr, Klaus; Stanoiu, Mihai; Stevenson, Paul; Strachan, Jon; Streicher, Brano; Stroth, Joachim; Syndikus, Ina; Suemmerer, Klaus; Taieb, Julien; Tain, Jose L.; Tanihata, Isao; Tashenov, Stanislav; Tassan-Got, Laurent; Tengblad, Olof; Teubig, Pamela; Thies, Ronja; Togano, Yasuhiro; Tostevin, Jeffrey A.; Trautmann, Wolfgang; Tuboltsev, Yuri; Turrion, Manuela; Typel, Stefan; Udias-Moinelo, Jose; Vaagen, Jan; Velho, Paulo; Verbitskaya, Elena; Veselsky, Martin; Wagner, Andreas; Walus, Wladyslaw; Wamers, Felix; Weick, Helmut; Wimmer, Christine; Winfield, John; Winkler, Martin; Woods, Phil; Xu, Hushan; Yakorev, Dmitry; Zegers, Remco: Zhang, Yu-Hu: Zhukov, Mikhail: Zieblinski, Miroslaw: Zilges, Andreas:

Incredients for the ⁷H case

GSI Helmholtzzentrum fน่าเฮ่งเห็งเดงจากการchung GmbH

Beyond the dripline: ⁷H (just) missing mass spectra

Light unbound nuclear ...

Beyond the dripline: ⁵H (just) energy spectra

Light unbound nuclear ...

Beyond the dripline: ⁵H interpretation

Light unbound nuclear ...

Neutronen enttarnen mit NeuLAND

Wie sind sehr neutronenreiche Kerne aufgebaut? Um dieser Frage nachzugehen bauen Forscher den Neutronendetektor NeuLAND. NeuLAND wird am zukünftigen Teilchenbeschleuniger FAIR eingesetzt. Das Ziel: Die Elemententstehung in Supernovae entschlüsseln.

HELMHOLTZ

Next Step: Novel neutron detector for R³B - NeuLAND demonstrator performance

Next step: R³B Time-of-flight detector prototyping

The structure of ¹¹Li via ¹⁰Li

H.S. et al. Phys. Rev. Lett. 83 (1999) 496 Nucl. Phys. A 791 (2007) 267

Confirmed eg @ GANIL (N.Orr, H.Al Falou) ¹¹Be, ^{14,15}B \rightarrow ⁹Li+n

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Phenomenological wave function N.B. Shulgina, B. Jonson, M.V.Zhukov Nucl. Phys. A825(2009)175

GSI

10|

Anomalous population of 10 He states in reactions with 11 Li

P.G. Sharov,^{1,2} I.A. Egorova,^{3,2} and L.V. Grigorenko^{1,4,5}

Excitation spectrum ¹⁰He* JINR/ACCULINA

Lessons learned: 1. Initial state ar

- Initial state and final state can be separated by measuring the correlations in the system.
- 2. The energy spectra are strongly influenced by the initial state and the reaction mechanism.
- 3. Data sets are otherwise often consistent.
- Interplay with theory including structure and reaction theory is needed!

Direct discussion ongoing !

Neutron Knockout from ¹⁷Ne: Unbound ¹⁶Ne

F. Wamers

One-neutron Knockout

¹⁶Ne relative energy spectrum

F. Wamers et al., PRL 112, 132502 (2014)

[11] G.J. KeKelis et al., Phys. Rev. C 17, 1929 (1978).
[12] G.R. Burleson et al., Phys. Rev. C 22, 1180 (1980).
[13] C.J. Woodward, R.E. Tribble and D.M. Tanner, Phys. Rev. C 27, 27 (1983).
[14] K. Föhl et al., Phys. Rev. Lett. 79, 3849 (1997).
[15] I. Mukha et al., Phys. Rev. C 79, 061301(R) (2009)

Confirmation of previous results. Narrow width for 1st and 2nd excited state.

K.W. Brown et al, Phys.Rev.Lett. 113, 232501 (2014) gs. Er=1.476(20) Γ<60keV "width puzzle"

¹⁵Ne Mass: prediction via mirror nuclei systematics

GSI Helmholtzzentrum für Schwerionenforschung GmbH

NeuLAND:

The High Resolution Neutron Time-of-Flight Spectrometer for R³B

K. Boretzky

NeuLAND detector parameters:

- full active detector using RP/BC408
- face sice 250x250 cm²
- active depth 300 cm
- 3000 scintillator bars
- 6000 PM / readout channels
- 32 tons

NeuLAND design goals:

- >90% efficiency for 0.2-1.0 GeV neutrons
- Multi-hit capability for up to 5 neutrons
- invariant-mass resolution: NeuLAND-target distance 35 m $\Delta E < 20$ keV at 100 keV above the neutron threshold

Going Neutron rich ...

P.G. Hansen, Nature 328 (1987) 476

¹¹Li with "known" structure → initial vs. final state Influence of reaction mechanism → different seed nuclei