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Outline of talk

1. Recalling some very old experiments
2. Channels or states?
3. A basis by constraining K-pi

Monday, May 2, 16



Do we understand the fluctuations in (n,f) cross sections?

235U + n -->fission, resolved into J=3 vs. J=4

M.S. Moore, et al., Phys. Rev. C 18 1328 (1978).

On the smallest energy scale, compound nucleus statistics with D=0.45 eV
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On the 100 eV scale, level density of class Il states

235 + n --> fission
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But what about fluctuations on a 1 keV scale?
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Fluctuations in angular distributions.
1) (gamma,f) well understood at threshold with
opening K-pi identified channels. (Little K-mixing
at E = 5.5 MeV)

2). (X,f) well understood at higher energy by
thermal distribution of K-pi channels.

3). Not so clear at energies just above the
barriers.
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hypotheses involving weakly excited states which will
fit the data. We simply cannot say anything about them.

Beginning with the case of the data from two neutron
energies, £,=200 and 300 keV, and two accessible
states of the transition nucleus, we found, after
extensive searching, that we could reject all hypotheses
not assigning values of 34 and $-4 for the K, 7 of
these two states. A few sample fits to the angular
distributions are shown in Fig. 5. We found that the
data at 400 and 500 keV could be adequately described
by adding a third accessible state in the transition
nucleus and assigning values of (K,7)=3—. The fits
to the 400- and 500-keV angular distributions and the
total fission cross section!? are shown in Iigs. 6 and 7.

Detailed calculations revealed that the values of E,
and #%w given in Table III should be regarded as
uncertain to at least 4=50-100 keV. The partial fission
cross sections are shown in Fig. 8.

Further attempts to fit the data from Z£,=200 keV
to E,=843 keV by adding a fourth and fifth accessible
state in the transition nucleus were unsuccessful. The
best attempts at fitting this data are shown in Figs. 9
and 10, although it should be understood that these are
not satisfactory fits to the data when judged by a X?
criterion. About all that can be said is that there must
be at least one more accessible state of the transition
nucleus with K=3% coming into play before E,=843
keV.



Channels or Resonances?

1
Bohr-Wheeler framework W = T
2mhpr Z ¢

C

Typical channel TC(E) 1

A exp(2m(B. — F)/w.)

B NSNS
B2+ (Tr+T)2/4

Typical resonance T,
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Questions:

1. How to calculate transmission coefficients at the channel
interface?

2. What is the bandwidth of the channels?

3. How to calculate mixing between channels?

Answers from the literature:
|. None

2.None
3. R. Bernard, H. Goutte, D. Gogny and W.Younes, Phys. Rev. C 84 044308 (201 I)

Problems with the channel picture:
|. Nonorthogonality

2. Separation of collective and intrinsic energy scales (unlike the Born-Oppenheimer
separation in chemistry).
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Bertsch, arXiv:1407.1899.pdf (2014)

Alhassid, RMP 72 895 (2000)
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Advantages of a discrete basis representation
--Close connection to microscopic Hamiltonians
--Well-known CI| computational methods are applicable
--Conceptual bridge to condensed matter theory (quantum transport)

--Different dynamical limits are accessible
--channel limit
--diffusive limit
--resonance-mediated conductance limit
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Possible implementation: the axial basis

Instead of using a generator coordinate to distinguish
states, use the filling of orbitals by the K quantum number.

Example 160 in shell model: si12, par,pie

K12 320 s2 72 o2 12 130
pr| 2

p R
n+ ) 2 o
cla 2
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A toy model for fission
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E (MeV)
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constraining only the K partition.

Example: partition-defined states in 12Dy

14 ¢
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Construct the basis by HF minimization

_ T Tt
H = E €iQ; Qi + E Vij, ki@; Q50 Ak

H from Y.Alhassid, et al. PRL 101 082501
(2008).



Comparison of GCM with discrete basis construction for the
excited band in 40-Ca.

+.
2 — 390 MV
o* - 3.35 Mel/
The spectrum

40Ca | 'P"c

K-pi constrained

1t Constructing the
Il
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Comparison of GCM with discrete basis construction for the
excited band in 40-Ca.
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K-pi-constrained method might be more reliable to find the PES.
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*0Ca HF Q,=108 fm?
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The landscape for U-236 fission, from class | to class |l states

236U (Méller)

12 32 52 72 92 112 1372

Green: Class | gs occupancy one unit higher
Red: Class Il gs occupancy one unit higher
Blue: Class Il gs occupancy two units higher
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The hopscotch fission path for 236U

RO & o 876

Wave functions calculated by the code HFBaxial. See
Rodriguez-Guzman and L.M. Robledo, PRC 89 054310 (2014).
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A completely different approach to dynamics:
time-dependent mean-field theory

week ending

PRL 116, 122504 (2016) PHYSICAL REVIEW LETTERS 25 MARCH 2016

S

Induced Fission of 2**Pu within a Real-Time Microscopic Framework

Aurel Bulgac,' Piotr Magierski,"* Kenneth J. Roche," and Ionel Stetcu’




Near-term goals
1. Code for partition-constrained DFT (Skyrme or Gogny)
2. Calculate p(q, E)

3. Estimate diffusion coefficient D(q, F)
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The interaction between configurations

(alv|B) = (pp|v|pp) det |(¢5]¢))]

See A. Arima and S. Yoshida, Nucl. Phys 12 139 (1959).

A qualitative result: <a\v\ﬁ>2 ~ ES/Q/,O(E) B.W. Bush et al., Phys. Rev C 45 1709 (1992).
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Shows that the interaction becomes stronger with excitation and thus
the dynamics approach the diffusive limit.
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