Ab initio many-body calculations of single-nucleon transfer reactions with deuteron projectile [arXiv:1602.04404]

FUSTIPEN French-U.S. Theory Institute for Physics with Exotic Nuclei GANIL, Caen, France (March 14-18 2016)

Francesco Raimondi (University of Surrey)

In collaboration with: G. Hupin (CEA, DAM), P. Navrátil (TRIUMF), S. Quaglioni (LLNL).

Outline

- Motivations for the study of transfer reactions and interest in ⁷Li(*d*,p)⁸Li reaction
- The No-Core Shell Model with Resonating Group Method (NCSM/RGM) and with continuum (NCSMC)
- Results on ⁷Li(d,p)⁸Li and ⁷Li(d,d)⁷Li reactions and resonances of ⁹Be above d-⁷Li threshold:
 - (Eigen)phase shifts
 - Cross sections
- Conclusions & perspectives

Deuteron-nucleus reaction: experimental motivations

Intense experimental activity (direct and inverse kinematics):

(*d*,p) reaction in direct kinematics

- Structure and spectroscopy of nuclei
- Nucleosynthesis and nuclear fusion applications (³H(*d*,n)⁴He reaction)
- Surrogate for (p/n) capture reactions
- Calibration reaction for measurement of processes of interest

⁷Li(*d*,p)⁸Li transfer reaction

4

⁷Li(*d*,p)⁸Li transfer reaction

Calibration reaction for astrophysical process: ${}^{7}Li(d,p){}^{8}Li$ as target calibration for ${}^{7}Be(p,\gamma){}^{8}B$

Possible mechanism of destruction of ⁷Li in the context of baryon-inhomogeneus models of the primordial nucleosynthesis

Primordial Lithium problem:

- 4-5σ discrepancy between observed and calculated (CMB+BBN) abundance of ⁷Li
- Nuclear solution to the problem: *d*-⁷Li destruction mechanism is ruled out (but only in a standard BBN scenario PRC 47, 2369 1993)

Ann. Rev. Nucl. Part. Sci. 2011 61:47-68

No-core shell model combined with the resonating group method (NCSM-RGM) and NCSM with continuum (NCSMC)

No-core shell model (NCSM):

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- Short- and medium-range correlations
- No continuum

P. Navrátil at al. PRL 84, 5728 (2000)

NCSM+Resonating group method (NCSM-RGM):

- Microscopic approach to describe the scattering of clusters
- Long range correlations (relative motion of clusters) K. Wildermuth, Y.C. Tang A unified theory of the nucleus 1977

S. Baroni, P. Navrátil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013)

NCSM with continuum (NCSMC):

Variational amplitudes (unknowns of the many-body problem)

 $|T\rangle = \sum_{\lambda} c_{\lambda} \otimes c_{\lambda} + \sum_{\tilde{\nu}} \int dr \, r \, (g_{\tilde{\nu}}^{J^{*T}}(r)) \hat{A}_{\tilde{\nu}} | \otimes f_{\tilde{\nu}} \otimes f_{\tilde{\nu}} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} | \otimes f_{\tilde{\nu}'} \otimes f_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, (g_{\tilde{\nu}'}^{J^{*T}}(r')) \hat{A}_{\tilde{\nu}'} \rangle + \sum_{\tilde{\nu}'} \int dr' \, (g_{\tilde{\nu}'}^{J^{*T}}(r'$

NCSM-RGM and NCSMC equations

$$\mathcal{H} = T_{\mathrm{rel}}(r) + \mathcal{V}_{\mathrm{rel}} + \bar{\mathcal{V}}_{\mathrm{C}}(r) + H_{(A-a)} + H_{(a)}$$
 Internal A-nucleon microscopic Hamiltonian
Coupled-channel equations solved for the amplitude c_{λ} and g_{ν}
$$\begin{pmatrix} E_{\lambda}\delta_{\lambda\lambda'} & \langle \bigotimes_{\mathsf{B}e} | \mathcal{H}\mathcal{A}_{\bar{\nu}} | \bigotimes_{\mathsf{S}_{\mathrm{L}}} \stackrel{\leftarrow}{\to} \bigotimes_{\mathsf{T}_{\mathrm{L}}} \stackrel{\leftarrow}{\to} \odot} \stackrel{\leftarrow}{\to} \odot} \stackrel{\leftarrow}{\to} \odot} \stackrel{\leftarrow}{\to} \odot \to} \overset{\leftarrow}{\to} \overset{\leftarrow}{\to} \to} \overset{\leftarrow}{\to} \to} \overset{\leftarrow}{\to} \to} \overset{\leftarrow}{\to} \to} \overset{$$

Coupled-channel microscopic *R*-matrix method on Lagrange mesh provides Scattering matrix and Asymptotic Normalization Coefficients by matching internal solution to known asymptotic M. Hesse, J.M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl Phys. A 640, 37 (1988)

⁷Li(*d*,p)⁸Li reaction and structure of ⁹Be

"Model space" reaction

"Real world" reaction

⁹Be ground state is stable All excited states are unbound

⁷Li(*d*,p)⁸Li reaction and structure of ⁹Be

"Model space" reaction

"Real world" reaction

⁹Be ground state is stable All excited states are unbound

Inclusion of the continuum:

• Low-energy spectrum: $n^{-8}Be(n-\alpha-\alpha)$

[J. Langhammer, P. Navrátil, S. Quaglioni, G. Hupin, A. Calci, and R. Roth, PRC(R) 91, 021301 (2015)]

⁷Li(*d*,p)⁸Li reaction and structure of ⁹Be

"Model space" reaction

"Real world" reaction

⁹Be ground state is stable All excited states are unbound

Inclusion of the continuum:

- Low-energy spectrum: $n^{-8}Be(n-\alpha-\alpha)$
- High-energy spectrum: d-⁷Li, p-⁸Li

(*d*, ⁷Li) + (p, ⁸Li) coupled NCSM-RGM calculation Eigenphase shifts

Model space (N_{max}=6,8 $\hbar\Omega$ =20 MeV): |d(d^{*})+⁷Li_{gs}> + |d(d^{*})+⁷Li_{1ex}> + |p+⁸Li_{gs}> + |p+⁸Li_{1ex}> + |p+⁸Li_{2ex}> + |p+⁸Li_{3ex}>

Virtual breakup of the deuteron: 4 pseudostates

Chiral nuclear interaction: Entem-Machleidt SRG-evolved (Λ=2.02 fm⁻¹) NN force at N³LO (cutoff 500 MeV)

12

(*d*, ⁷Li) + (p, ⁸Li) coupled NCSM-RGM calculation Eigenphase shifts

Dominant partial waves above p + ⁸Li threshold: 3/2^{-,+}, 5/2^{-,+}

Main phase shifts for 5/2+:

- P-wave in $(d, {}^{7}Li)$
- Resonant S-wave in (p, ⁸Li)

(p, ⁸Li) UNcoupled NCSM-RGM calculation Phase shifts

- T=3/2 resonances (1/2⁻, 5/2⁻) reproduced.
- S-wave phase shift in 5/2⁺ strongly suppressed in NCSM-RGM calculation.
- Effects of the short-range correlations in NCSMC calculation: 1) Resonant S-wave in 5/2⁺ enhanced; 2) P-wave in J=5/2⁻ e T=1/2 becomes bound.

Model space (N_{max}=8 $\hbar\Omega$ =20 MeV):

(p, ⁸Li) UNcoupled NCSM-RGM calculation Phase shifts

- T=3/2 resonances (1/2⁻, 5/2⁻) reproduced.
- S-wave phase shift in 5/2⁺ strongly suppressed in NCSM-RGM calculation.
- Effects of the short-range correlations in NCSMC calculation: 1) Resonant S-wave in 5/2⁺ enhanced; 2) P-wave in J=5/2⁻ e T=1/2 becomes bound.

Model space (N_{max}=8 $\hbar\Omega$ =20 MeV):

(p, ⁸Li) UNcoupled NCSM-RGM calculation Phase shifts

- T=3/2 resonances (1/2⁻, 5/2⁻) reproduced.
- S-wave phase shift in 5/2⁺ strongly suppressed in NCSM-RGM calculation.
- Effects of the short-range correlations in NCSMC calculation: 1) Resonant S-wave in 5/2⁺ enhanced; 2) P-wave in J=5/2⁻ e T=1/2 becomes bound.

Model space (N_{max}=8 $\hbar\Omega$ =20 MeV):

(*d*, ⁷Li) UNcoupled NCSM-RGM and NCSMC calculation

- Dominant resonances: J=7/2⁻ in D-wave and 5/2⁺ in P-wave.
- Effect of the short-range correlations on J=5/2⁺ in NCSMC calculation: Decreased width of the resonance.
- Coupling effect: Quenching of ⁶P_{5/2+} resonance

(*d*, ⁷Li) UNcoupled NCSM-RGM and NCSMC calculation

- Dominant resonances: J=7/2⁻ in D-wave and 5/2⁺ in P-wave.
- Effect of the short-range correlations on J=5/2⁺ in NCSMC calculation: Decreased width of the resonance.
- Coupling effect: Quenching of ⁶P_{5/2+} resonance

Spin-parity assignment of 0.78 MeV resonance of ⁹Be

⁹Be spectrum above *d*-⁷Li threshold

Low peak in the experimental total cross section: E(5/2⁻)~0.78 MeV above the threshold (Uncertain spin-parity assignment)

⁷Li(*d*,*d*)⁷Li cross section

Experimental resonant peaks at 0.8 MeV (S-wave) and 1.0 MeV (P-wave) ('elastic' process not ideal probe for the ⁹Be resonant states)

 Peak structure (1 MeV and 1.2 MeV) in uncoupled calculations (J=7/2⁻ in D-wave and 5/2⁺ in P-wave). ...shifted at higher energy (missing bare 3N? SRG parameter dependence?)

- Effect of the short-range correlations in NCSMC calculation: Increased lifetime of the resonance too narrow peaks (lack of p-⁸Li decay channel. other mass partition?)
- Qualitative trend of the data reproduced by NCSMC and coupled NCSM-RGM calculations ...still not-converged calculation at N_{max}=8

⁷Li(*d*,p)⁸Li total cross section

Included channels: (1) p, ⁸Li (2) *d*, ⁷Li (3) coupling (*d*,p) (4) virtual breakup of d

(22.4) ⁸Li Ľ, 21.1787 6 He + 3 He n (0°) 9.20 17.6890 $(\frac{7}{2})^{t}:\frac{1}{2}$ 7.493 16.8882 ${}^{6}Li + t$ $\frac{\frac{1}{2}}{(\frac{5}{2})}$ ${}^{8}\text{Li} + p$ ${}^{7}Li + d$ 16.6959 T = -15.2221 $^{7}Li + {}^{6}Li - \alpha$ 14.48 (14.3922 (5): 1 13.79///// 13.6067 13.2280 ⁹Li $\overline{{}^{10}\mathbf{B} + \mathbf{t} - \boldsymbol{\alpha}}$ 11.2025 $7Li + ^{3}He - p$ 10.4387 $^{7}Li + t - n$ 8.031 $^{11}B + d - \alpha$ 4.704 2.467 2.4 ${}^{5}\text{He} + \alpha$ 1.5736 1.6654 1.664 THRESH $^{8}\text{Be} + n$ $^{4}\text{He} + ^{4}\text{He} + n$ -0.5550 $J^{\pi} = \frac{3}{2}$; $T = \frac{1}{2}$ ⁹Be -1.0924 ${}^{10}\text{Be} + \text{d} - \text{t}$ ${}^{10}B + d - {}^{3}He$

Theo.thresh. [MeV]

-40.124

-39.659

-0.465

Not-included channels: (1) ⁸ Be, n (2) ⁶ Li, t	Channel	Exp. thresh. [Me\
	d, ⁷ Li	-41.470
	p, ⁸ Li	-41.278

-0.193

Q-value

⁷Li(*d*,p)⁸Li total cross section

Not-included channels: (1)⁸Be, n (2) ⁶Li, t

Experimental recommended value 0.147±0.011 b (Γ≈0.2 MeV) at 0.78 MeV of deuteron kinetic energy

Calibration peak for ⁷Be(p,γ)⁸B radiative capture reaction

⁷Li(*d*,p)⁸Li total cross section

Included channels: (1) p, ⁸Li (2) *d*, ⁷Li (3) coupling (*d*,p) (4) virtual breakup of *d*

Not-included chann

(1)⁸Be, n (2) ⁶Li, t

- Position of the first resonant peak overestimated by ~ 0.33 MeV (see Q-value)
- Peak at 17.493 MeV (⁹Be spectrum) not reproduced (missing ⁸Be(α-α)-n? 3N forces?)

d, ⁷Li, ⁸Li NCSM energies adjusted to reproduce the experimental Q-value of the reaction

> position of first peak slightly overestimated

els:	Channel	Exp. thresh. [MeV]	Theo.thresh. [MeV]
	d, ⁷ Li	-41.470	-40.124
	p, ⁸ Li	-41.278	-39.659
	Q-value	-0.193	-0.465

Impact of different partial waves on NCSM-RGM total cross section

⁷Li(*d*,p)⁸Li cross section

- Confirmed dominant role played by 5/2⁺ partial wave
- Below ~2 MeV the cross section is dominated by positive-parity partial waves
- Increasing trend up to deuteron break-up fairly well reproduced (contribution from 5/2⁻ and 3/2⁺ partial wave)

Conclusions & Perspectives

First application of the NCSM-RGM for deuteron-projectile and p-shell nucleus as target:

 Inclusion of the "elastic" and coupling channel in the description of transfer reactions

Study of the ⁷Li(d,p)⁸Li transfer reaction and of the ⁹Be resonances above d-⁷Li threshold:

- Discussion of the spin-parity assignment of E_d=0.78 MeV resonance
- To be done:
- Complete the calculation of the ⁷Li(d,p)⁸Li transfer reaction in the NCSMC framework
- Include 3N force also for p-shell nuclei