

Transfer- and Fusion-Induced Fission of ²³⁸U and ¹²C : Experimental Observables

<u>D. Ramos¹</u>, C. Rodríguez-Tajes², M. Caamaño¹, F. Farget², L. Audouin³, J. Benlliure¹, E. Casarejos⁴, E. Clement², D. Cortina¹, O. Delaune², X. Derkx^{5,*}, A. Dijon², D. Doré⁶, B. Fernández-Domínguez¹, G. de France², A. Heinz⁷, B. Jacquot², A. Navin², C. Paradela¹, M. Rejmund², T. Roger², M.-D. Salsac⁶, C. Schmitt²

(1) Dpto. Física de Partículas, USC, Santiago de Compostela, Spain. (2) GANIL, CEA/DMS - CNRS/IN2P3, Caen, France. (3) IPN Orsay, Université de Paris-Sud XI - CNRS/IN2P3, Orsay, France. (4) CIMA, Escuela Técnica Superior de Ingenieros Industriales, UVigo, Vigo, Spain. (5) LPC Caen, Université de Caen Basse-Normandie – ENSICAEN - CNRS/IN2P3, Caen, France. (6) CEA Saclay, DSM/IRFU/SPhN, Saclay, France. (7) Chalmes University of Technology, Göteborg, Sweden.

Fission at FUSTIPEN II, Caen, France

03/05/2016

Goals of Inverse kinematics

Kinematical boost increases the kinetic energy of the fission fragments providing **the capability of a direct identification**

Kinematical boost allows to keep a wide angular coverage in the CM frame when the size of the detectors is limited Fission fragment Z matrix identification

Reaction Mechanism

Fissioning systems difficult to produce by another mechanism

10% above Coulomb barrier

Transfer-Fission:

10 n-rich actinides produced with a distribution of E_X below 30 MeV

Fusion-Fission:

production of 250 Cf with $E_X = 45$ MeV 10 times more likely than any transfer channel

Transfer Reaction and Excitation Energy

Counts/0.1 MeV (arb. units)

0

5

20

10

 $\times 10^{3}$

0.05 0.1 0.05 10 20 5 10 15 10 (¹²C, ⁹Be) ²⁴¹Pu (¹²C,⁸Be) ²⁴²Pu (¹²C.⁶He) ²⁴⁴Cm 200 200 100 100 10 10 20 30 20 30

 E_x (MeV)

different fissioning systems from reconstruction of the binary reaction

Higher E_x for higher number of transferred nucleons

 $E_x \sim 8$ MeV is comparable with fast-neutron fission

> C. Rodriguez-Tajes et al., PRC (2014) 024614

Excitation of Target-like Recoil

FF

FF

EXOGAM detector allow us to evaluate the excitation probability of the target-like nuclei

238**T** J

@ 6.14 AMeV

γ-rays measurements show excited states in ¹²C, ¹¹B and ¹⁰Be in coincidence with fission with $P_{\gamma} = 0.12-0.14$

Fission Fragments Detection

S. Pullanhiotan et al., NIM A 593 (2008) 343

Fission Fragments Identification

Mass Identification

Nuclear Charge Identification

 $N_{0}^{0} = \frac{1}{26 28 3 32 3.4 3.6 3.8 4}$

A/q provides the q separation and contributes to a better A resolution

More than 300 isotopes identified

γ-rays in coincidence with fissionfragments provide a cross checkfor the Z and A identification

Transmission through VAMOS

4 settings of VAMOS covers different range of $B\rho - \Theta$

The transmission limits the angular range

The angular coverage is larger for higher fission fragments

Beam normalization for different settings is required

Fission Yields Calculation

We need to recover all the charge states per isotope and compensate the acceptance in the azimuthal and polar angles

$$Y(Z, A) = I(Z, A) \frac{2}{Range(Z, A)}$$

$$I(Z, A) = \sum_{q} I(Z, A, q)$$

Isotopic Fission-Fragment Distribution

Fission Yields

Mass-yields and Z-yields distribution of 5 different fissioning systems, most of them exotic nuclei

²³⁹Np is scarce $(T_{1/2} (^{238}Np) = 2.1 d)$

There is no direct measurements of

fragment distributions of ²⁴⁴Cm

The shift in Z of the light fragments with the atomic number of the fissioning system reflects the stabilization of the heavy group

Fission Yields

238

Bremsstrahlung y-induced fission Ex~9 MeV

²³⁷Np(2n_{th}, f) Ex~6.2 MeV

 $^{239}Pu(n_{th}, f) Ex \sim 6.5 MeV$

Neutron Excess

Evolution of the polarization with the **E**_x and the **fissioning system**

Charge Polarization present in all the systems

Evolution with Excitation Energy

The $\langle N \rangle / Z$ ratio gets reduced around $Z \approx 50$ by increasing E_x , signature of a closed shell which effect is smaller for higher E_x .

3 different regions of E_x were selected

Total Kinetic Energy

Mean value of the velocity of ff as a function of Z

In the asymmetric region, the light fragment is emitted with a higher velocity compared with the LDM

 $TKE = u \cdot \langle A \rangle_Z \cdot (\langle \gamma \rangle_Z - 1) +$ $u \cdot < A >_{Z_{Act}-Z} \cdot (<\gamma >_{Z_{Act}-Z} -1)$

PRELIMINARY

TKE values decrease with higher E_x The distance between both fragments at the scission point is larger with higher E_x

Super Long (μ=Zfiss/2, σ =4) - Standard I - Standar II - Super Asymmetric

The position of the three modes presents a similar evolution with the fissioning system SII is predominant in lighter fissioning system

We study the fragment distributions for different positions of a gate moving along the E_x

Fission Modes positions fixed to the values obtained from the full Ex distribution fit

excitation energy

SII width increases with the excitation energy

SII higher with higher Ex

SII width increases with the excitation energy

Conclusions

The fission of 5 fissioning systems (²³⁸U, ²³⁹Np, ²⁴⁰Pu, ²⁴⁴Cm and ²⁵⁰Cf), were investigated

Fissioning systems were produced by transfer reactions in inverse kinematics, and identified in SPIDER, allowing the measurement of their range of excitation energies

The VAMOS spectrometer permits the full isotopic identification of fission fragments

The determination of isotopic fission yields reveals structure effects, a larger charge polarization is present in lighter fissioning systems, where the neutron excess increases driven by the double magic nucleus ¹³²Sn

The structure effects were investigated as a function of the excitation energy, resulting in a reduction of the neutron excess, the asymmetric fission component, and the TKE, for higher Ex

The symmetric and two asymmetric modes (SL, SI, SII) were fitted to the fragments distribution of ²³⁸U and ²³⁹Np. A third asymmetric mode (SA) was need to describe ²⁴⁰Pu, ²⁴⁴Cm and ²⁵⁰Cf cases

The position of the modes increases with the fissioning system, while the predominance of SII decreases

The fission modes were studied as a function of Ex, the SII mode presents a stronger dependence than SI or SA, with Ex. The SL-mode contribution is observed to increase with the Ex for ²⁴⁰Pu