

Angular correlations between fragments and neutrons in the spontaneous fission of ²⁵²Cf

Andreina Chietera

on behalf of the

CORA collaboration

MOTIVATIONS

FISSION PROCESS: bulk of n emitted isotropically in Centres of Mass (CM) of fully accelerated Fission Fragments (FF)

Discrepancies between experimental neutron angular distributions and pure isotropic evaporation are observed.

MOTIVATIONS

MOTIVATIONS

forward/backward angles in lab system

• introduction of *n* **anisotropy** in the *CM* of FF

CORA EXPERIMENT

CORA EXPERIMENTAL SETUP

CODIS- FISSION CHAMBER

double ionisation chamber for 4π detection of FF

sectored cathode

>> FF :

Ε, Α, θ, Φ

n detection:

- ToF measurement
- $n \gamma$ discrimination
- central position of each cell
 - >> θ₀, φ₀

60 individual cells of liquid scintillator (NE213)

DEMON

>> n :

~ 10¹⁰ FF

10⁹ FF-2n

E, θ_0 , ϕ_0

duration: 5 months

ANALYSIS METHOD

CORA: multiple parameter experiment \longrightarrow complex

many experimental biases:

geometrical acceptance

- pileup
- detector threshold
- intrinsic efficiency
- cross talk
- $\theta_n, \Phi_n \rightarrow \text{DEMON central angles}(\theta_0, \Phi_0)$

c++ code

GFANT4

>> careful simulation mandatory ---->

GENERAL FEATURES OF **n** GENERATION

- FFs attributes
- type: heavy/light
- position: isotropic $\cos\theta_{e}$, Φ_{e}
- mean velocity V_{ff}
- nucleus temperature T_{ff}
- *n* multiplicity $v \rightarrow$ Gaussian *n* distribution

& covariance $\rho = -0.2$

 V_{FF}

 V_{lab}

lab

 θ_{lab}

Parameter	light	heavy
v _{ff} (cm/ns)	1.355	1.022
T _{ff} (MeV)	0.91	0.93
<v></v>	2.056	1.710
σ	0.94	1.07

Fission neutrons

- CMs of FF *n* emission:
- Φ_{cm} , cos θ_{cm} : W(θ_{cm})= $I + A_{nJ} \sin^2 \theta_{cm}$ $/T_{ff}$

 V_{cm}

 θ_{cm}

energy $\rightarrow \phi(\eta) \sim \sqrt{\eta} e^{-1}$

to lab system emission

□Scission neutrons

 ϕ , cos θ : isotropic in the lab $_{-E_{sci}}$

- energy $\implies \varphi(E_{sci}) \sim E_{sci} e$ T_{sci}=1.2 MeV (A. Gagarski)
- *n* multiplicity v recomputed

(2001) (2005)

194

IAEA

٩,

. Vorobyev Kornilo

« theoretical » distribution • cross talk (j) 450 n 400 simulated distribution 300 250 geometrical acceptance >> add ~20% of fake correlations geometrical acceptance 325000) 물20000 5000 15000 Yield (a.u.) 10000 5000 4500 0<mark>-1 -0.8 -0.6</mark> -0.4 -0.2 0 0.2 0.4 0.6 0.8 4000 pileup j25000 3500 <u>물</u>20000 15000 3000 10000 5000 2500 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 cos0. 2000 threshold

n

d1

SIMULATION / EXPERIMENT

SCISSION NEUTRONS ...?

A. Gagarski et al, ISINN-20, 2012

X2JEST ON THE CENTRAL ANGLES:

the narrow structures hide the

neutron emission mechanisms

18

COSOnn

SIMULATION / EXPERIMENT

0.6

0.8

cos_n

200

150

-0.8

-0.6

-04

-0.2

0

0.2

0.4

5

4

-0.8

-0.6

-0.4 -0.2

0.2

0

0.4

0.6

0.8

 $\cos\theta_{nn}$

COSOnn

CORA : THE ORIGINAL GOAL

 $\Phi_{nn|LF}$

EXPERIMENTAL $\Phi_{nn|LF}$ DISTRIBUTION

APPLY THE UNCORRELATED METHOD TO THE EXPERIMENT

experiment

uncorrelated experiment

ratio

CONCLUSIONS...

$$ Abovt $\Phi_{nn LF}$
$-a_2 = 0.0043 \pm 0.0090$
$A_{nJ} = 0.16 \pm 0.02$
$w_{sci} = 8\% \pm 2\%$

Αβοντ θ _{nn}				
SIMULATION PARAMETERS		No Cross talk NDF =14		
A _{nJ}	ω_{sci}	χ2/NDF		
0	0	0.87		
0.16	0	0.59		
0	8	0.35		
0.16	8	0.24		
1	20	3.24		

Αβοντ θ _{nLF}				
SIMUL PARAI	ATION METERS	No cro NDF	ross talk)F =14	
A _{nJ}	ω_{sci}	χ2/NDF	P-VALUE	
0	8	1.7	<0.00001	
0.16	8	1.01	0.45	

... AND PERSPECTIVES

...ABOUT CORA3

- experiment:
 - 1. more statistics
 - 2. suppress/reduce cross talk
 - on existing data (CORA2, cross talk experiment)
 - new experiment « without » cross tallk
 - simulation:

« CORA4 »

- improvement of models....
- scan more systematically the various parameters

evolution of ω_{sci} + A_{nl} with neutron energy , FF mass ...

20??

