

Dependence of Fission-Fragment Properties on Excitation Energy for N-rich Actinides

<u>D. Ramos¹</u>, C. Rodríguez-Tajes², M. Caamaño¹, F. Farget², L. Audouin³, J. Benlliure¹, E. Casarejos⁴, E. Clement², D. Cortina¹, O. Delaune², X. Derkx^{5,*}, A. Dijon², D. Doré⁶, B. Fernández-Domínguez¹, G. de France², A. Heinz⁷, B. Jacquot², A. Navin², C. Paradela¹, M. Rejmund², T. Roger², M.-D. Salsac⁶, C. Schmitt²

(1) Dpto. Física de Partículas, USC, Santiago de Compostela, Spain. (2) GANIL, CEA/DMS - CNRS/IN2P3, Caen, France. (3) IPN Orsay, Université de Paris-Sud XI - CNRS/IN2P3, Orsay, France. (4) CIMA, Escuela Técnica Superior de Ingenieros Industriales, UVigo, Vigo, Spain. (5) LPC Caen, Université de Caen Basse-Normandie – ENSICAEN - CNRS/IN2P3, Caen, France. (6) CEA Saclay, DSM/IRFU/SPhN, Saclay, France. (7) Chalmes University of Technology, Göteborg, Sweden.

FUSTIPEN Fission Workshop, Caen, France

22/10/2015

Limitations of Direct Kinematics

Goals of Inverse kinematics

Reaction Mechanism

Fissioning systems not accessible from any other mechanism

10% above Coulomb barrier

Transfer-Fission:

10 n-rich actinides produced with a distribution of E_X below 30 MeV

Fusion-Fission:

production of 250 Cf with $E_X = 46$ MeV 10 times more likely than any transfer channel

Transfer Reaction and Excitation Energy

(¹²C.⁶He) ²⁴⁴Cm

20

30

200

100

40

Counts/0.1 MeV (arb. units)

(¹²C, ⁹Be) ²⁴¹Pu

10

20

(¹²C,⁸Be) ²⁴²Pu

20

E_x (MeV)

30

200

100

C. Rodriguez-Tajes et *al.*, PRC (2014) 024614

transferred nucleons

 $E_x \sim 8$ MeV is comparable with

fast-neutron fission

Excitation of Target-like Recoil

EXOGAM detector allow us to evaluate the excitation probability of the target-like nuclei

γ-rays measurements show excited states in ¹²C, ¹¹B and ¹⁰Be in coincidence with fission with $P_{\gamma} = 0.12-0.14$

Fission Fragments Detection

M. Rejmund et al., NIM A 646 (2011) 184 *S.* Pullanhiotan et al., NIM A 593 (2008) 343

Fission Fragments Identification

Mass Identification

Proton Number Identification

A/Q provides the Q separation and contributes to a better A resolution

γ-rays in coincidence with fissionfragments provide a cross checkfor the Z and A identification

A. Shrivastava et al. PRC 80 (2009) 051305

Transmission through VAMOS

9

Isotopic Fission-Fragment Distribution

10

Fission Yields

Neutron Excess

Neutron Excess

Ζ

60

Average Velocity

In the asymmetric region, the light fragment is emitted with a higher velocity compared with the LDM

$$\langle V_{fiss} \rangle = \frac{\sum_{A} V_{fiss}(Z, A) \cdot Y(Z, A)}{\sum_{A} Y(Z, A)}$$

PRELIMINARY

Velocity decrease with higher E_x The distance between both fragments at the scission point is larger with higher E_x

Average Total Kinetic Energy PRELIMINARY

 $u \cdot \langle A \rangle_{Z_{Act}-Z} \cdot (\langle \gamma \rangle_{Z_{Act}-Z} -1)$

TKE values decrease with higher E_x

- Larger distance at scission point

- Larger neutron evaporation

238

-	Super Long (A, μ and σ fixed)
-	- Standard I
-	- Standar II

Both Standard positions appear above the K.-H. Schmidt prescription

K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000)

We observe an evolution of the position and the integrals of the asymmetric modes Standard I and Standard II

239Nn

The evolution of the fission channels becomes more clear in this case

240PL

Fissioning system with higher statistics Both positions increase with the Ex for SI and SII. The evolution of the integrals is also clear

Transfer-induced fission in inverse kinematics coupled to the VAMOS spectrometer allowed:

- The study the fission of different fissioning systems (²³⁸U, ²³⁹Np, ²⁴⁰Pu, ²⁴⁴Cm and ²⁵⁰Cf).
- The excitation energy measurement distribution through the transfer reaction kinematics.
- The full isotopic identification of fission fragments using the VAMOS spectrometer.

The effect of shell structure was observed as a function of the excitation energy.

- The evolution of the fission fragments from asymmetric to symmetric distributions.
- The $\langle N \rangle / Z$ ratio at Z \approx 50 decreases by increasing the excitation energy.
- The TKE decreases by increasing the excitation energy.

Fission Fragment Distribution were investigated in terms of Fission Channels Interpretation

- The SI, SII and SIII are needed to reproduce the almost gaussian shape of ²⁵⁰Cf

- Observed an evolution of the position and the integral of SI and SII with the excitation energy depending on the fissioning system

Fission Barriers

C. Rodriguez-Tajes et *al.* PRC (2014) 024614