Fission yields measurements and fission study in inverse kinematics

Laurent Audouin (IPN Orsay / Paris-Sud University) on behalf of the SOFIA collaboration

Fustipen, GANIL October 2015

Fission fragment yields : applied and basic physics

- FF impact the reactor neutronics :
 - Delayed neutrons, neutronic poisons
 - Increased influence with larger burn-ups (30 MWd/T originally, then 60...
 90 tomorrow?)
 - Criticity excursions : quick accumulation of FF
- FF are the main source of residual power and radioactivity :
 - Shielding for used fuel handling and reprocessing
 - Loss Of Coolant Accident (LOCA)
- Decay heat simulations require better fragment yields
- FF are also a remarkable probe for nuclear structure
 - N- and Z-shell effects on fission partition
 - Shell effects at large deformation
 - Influence of the pairing : even-odd staggering in the yields
 - Distribution of the fission energy : fragments deformation

Fission modes in the actinides region

- 3 fission modes in the U region :
 - 2 asymmetric modes
 - 1 symmetric mode
 - Each mode is associated to different scission configurations
 - The Total Kinetic Energy (TKE) is a good probe of these configurations

standard 1 (ST1)	standard 2 (ST2)	superlong (SL)
 o asymmetric 2nd hamp o short path: compact o quasi-spherical heavy FF ⇒ A_H ~132, Z_H ~50, N_H ~ 82 	 o asymmetric 2nd hamp o long path o deformed heavy FF ⇒ A_H ~140, Z_H ~54, N_H ~ 88 	 symmetric 2nd hamp large elongation less shell influence (LDM) increases with E*
HIGH TKE	INTERMEDIATE TKE	LOW TKE

Where are we now ?

- Data are generally imprecise and/or limited
- Only a handful of fissioning systems were studied
- Even for the most-studied system $^{235}U(n_{th},f)$: 10% uncertainties

- Direct kinematics measurements face limitations :
 - Large-Z yields can hardly be measured (kinetic energy)
 - Only a few actinides can be used as targets

Inverse kinematics

- The actinide is the projectile
- Identification of the fragments in a recoil spectrometer
- Secondary beam : tens of different nuclei become accessible
- No neutron target :
 - Collision : large average E* for a relativistic beam
 - Transfer : reduced beam energy, only 1 fragment in the spectrometer
 - Electro-magnetic interaction : relativistic beam, 100% acceptance
- Pioneer experiment : K.-H. Schmidt et al. (1996) : both FFs, only Z
- 2010s : SOFIA@GSI

Concept and aims of SOFIA

• Identification of both fission fragments : isotopic yields !

Fustipen 2015

- Nuclear charge
- Mass number
- Kinetic energy
- Deduced total prompt neutron multiplicity
- Measurement before beta decay
- New recoil spectrometer (Aladin magnet)
- Coulomb-induced fission :
 - Excitation of the GDR (<E> ~ 12 MeV)
 - ~ $^{236}U(gamma,f) \sim ^{235}U(n_{6 MeV},f)$
- Broad range of fissioning systems : actinides and neutron deficient pre-actinides (²³⁸U fragmentation)

STUDIES ON FISSION WITH ALADIN

2 campaigns of SOFIA

- First run : 2012
 - Measurement of ^{234,235,238}U and ^{237,238}Np (10⁵ 10⁶ fission events per system)
 - Transition from symmetric to asymmetric in $^{221-230}$ Th (10³ 10⁵ / system)
 - Fission of very neutron-deficient pre-actinides from Hg to Ra : low statistics (10 - 10³ / system)
- 2014 run : main objective \rightarrow ²³⁶U
 - Improved set-up to get high statistics : 2.10⁶ fission events (in 20 hours only!)
 - Few hours devoted to lighter nuclei for calibration purpose

Secondary beam production

- Fragmentation of ²³⁸U on Be target
- Selection and identification of the secondary beam in the FRagment Separator (FRS)

Laurent Audouin Fustipen 2015

Secondary beam identification: 2014 setup STOP IB / START FF Primary beam ²³⁸U, 1A.GeV Secondary beam Cave C ▲ Fragmentation **FRS - Setting** the secondary beam **START** LoF 135m Be target Dipoles - Scintillators □ Degrador **MWPC** Triple MUSIC

- Standard Bp ΔE ToF method
- High-Z fragments have a large probability to carry electron(s)

Secondary beam identification: 2014 results

Laurent Audouin Fustipen 2015

STUDIES ON FISSION WITH ALADIN

Laurent Audouin Fustipen 2015

Technical challenges!

- Complete Z discrimination: resolution better than 1% FWHM
- Mass discrimination (Bp): position resolution < 200 µm FWHM
- The 8 m flight path requires a ToF resolution ~ 40 ps FWHM

Nuclear charge distribution

• Excellent nuclear charge resolution : $\delta Z = 0,35$ FWHM

Rejection of the nuclear contribution

- Selection of events $Z_1 + Z_2 = Z_{beam}$
- Limiting fragmentation regime :
 - The reaction mechanism does not depend on the target
 - Subtraction of yields obtained on Al target (renormalization)

Charge yields and proton even-odd effect : U

- Unprecedented resolution
- Role of ST1 (heavy fragment around ¹³²Sn) increases with mass

Fustipen 2015

STUDIES ON FISSION WITH ALADIN

Comparison to libraries

- Underestimation of e-o effect at 400 keV in JEFF
- High-energy damping of e-o effect too strong in ENDF

Protons even-odd effect : systematics

- Varies weakly with the mass of the system
- Slight increase with asymmetry in SOFIA data
- Reduced by increasing excitation energy

Charge yields and proton even-odd effect : Th

- Transition from asymmetric to symmetric splitting
 - Enhancement of the 36-54 splitting in asymmetric cases
- Strong even-odd staggering even for symmetric splitting
- Excellent agreement with Schmidt et al.

Charge yields and proton even-odd effect : Bi & Hg

- Transition in Bi, much faster than in Th
- 46-37 strongly favored in light Bi isotopes
 - Shell effect for Z = 46 in neutron-deficient region ?

STUDIES ON FISSION WITH ALADIN

Laurent Audouin Fustipen 2015

Mass separation

- Unique performance in ToF and position measurement
- Mass resolution : 0.6 to 0.8 FWHM
- Statistical uncertainty 1.6% to 3%

Isotonic yields

- N=82 is a driving force in scission
- Limited even-odd effect

Laurent Audouin Fustipen 2015

Isotopic distributions

Dramatic change in favored fission mode : SL to ST1

Laurent Audouin Fustipen 2015

Prompt neutrons

Laurent Audouin Fustipen 2015

STUDIES ON FISSION WITH ALADIN

Total kinetic energy

- Transition in modes is reflected in TKE :
 - High TKE for ST1 mode (compact scission configuration)
 - Low TKE for SL mode (large deformation)
- Conversely, v is large when TKE is small

Laurent Audouin Fustipen 2015

STUDIES ON FISSION WITH ALADIN

Summary

- SOFIA has met technical challenges to provide high-quality data
 - Full identification of both FF, TKE, prompt neutrons
 - High-precision yields
 - Large range of nuclei
- Coulomb-induced fission is an efficient tool for low-energy fission
- Data consistent with existing measurements
- New constraints for modeling
- Reduction of uncertainties in evaluated libraries
- The question of Z vs N shell for fission stabilization remains open
- Large perspectives within the R3B program @ FAIR
 - Neutron multiplicity per fragment
 - ²⁴²Pu beam : isotopic yields for Pu and Am isotopes
 - Continued exploration of the NW of the map
 - e-induced fission ? Yields as a function of E*...

• Much more limited than the proton even-odd effect

