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Outline 

§  Ab initio calculations in nuclear physics 

§  Chiral NN and 3N interactions 

§  No-core shell model 

§  Including the continuum with the resonating group method  

§  NCSM/RGM: N-4He 

§  NCSMC: 5,7He, 9Be, 11N (p-10C), 17C(n-16C) 

 

§  Three-body cluster dynamics: 6He 

 

§  Outlook 
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Ab initio Nuclear Structure & Reaction approaches 

Ab initio 
²   All nucleons are active 
²   Exact Pauli principle 
²   Realistic inter-nucleon interactions 

² Accurate description of NN (and 3N) data 

²   Controllable approximations 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



The ab initio no-core shell model (NCSM)   

•  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

•  Realistic nuclear Hamiltonian 

–  High-precision nucleon-nucleon potentials 

–  Three-nucleon interactions  

•  Finite harmonic oscillator (HO) basis  

–  A-nucleon HO basis states 

–  complete NmaxhΩ model space 

•  Effective interaction tailored to model-space truncation for NN(+NNN) potentials 

–  Okubo-Lee-Suzuki unitary transformation  

•  Or a sequence of unitary transformations in momentum space: 
–  Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential 

Convergence to exact solution with increasing Nmax 
for bound states. No coupling to continuum.  

A 
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

1max += NN



 Calculations with chiral 3N: SRG renormalization needed 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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NCSM calculations of 6He and 7He g.s. energies 
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3/2-
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ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  6He: Egs=-29.25(15) MeV (Expt. -29.269 MeV)  
•  7He: Egs=-28.27(25) MeV (Expt. -28.84(30) MeV) 

•  7He unbound (+0.430(3) MeV), width 0.182(5) MeV 
•  NCSM: no information about the width 

 

7He 

unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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+ Âν
ν

∑ φ
1ν



ξ
1ν{ }( )φ2ν



ξ
2ν{ }( )gv (


rv )

+ Âµ
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•  φ : antisymmetric cluster wave functions  
–  {ξ}: Translationally invariant internal coordinates 

   (Jacobi relative coordinates) 

–  These are known, they are an input 
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•  Αν, Αµ : intercluster antisymmetrizers  
–  Antisymmetrize the wave function for exchanges of nucleons between clusters 

–  Example: 
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+ Âν
ν

∑ φ
1ν



ξ
1ν{ }( )φ2ν



ξ
2ν{ }( )gv (


rv )

+ Âµ
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•  c, g and G: discrete and continuous 
linear variational amplitudes 

–  Unknowns to be determined 
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•  Discrete and continuous set of basis functions 
–  Non-orthogonal 

–  Over-complete  
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•  In practice: function space limited by using 
relatively simple forms of Ψ chosen according to 
physical intuition and energetical arguments 

–  Most common: expansion over binary-cluster basis    
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The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 

15 
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Â ′vV

NNN
Â
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Including 3N interaction challenging: more than 2 body density required 
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   Separation into “internal” and “external” regions at the channel radius a 

 

 

–  This is achieved through the Bloch operator: 

–  System of Bloch-Schrödinger equations: 

–  Internal region: expansion on square-integrable Lagrange mesh basis 

–  External region: asymptotic form for large r 
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n-4He scattering: NN vs. NN+NNN interactions 

chiral NN+NNN(500)  
chiral NN+NNN-induced                           
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HO Nmax=13, hΩ=20 MeV 
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NN+NNN interaction 
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Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
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We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N )
interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions
for the 3N -force integration kernels, and discuss computational aspects of two alternative implementations. The
extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-
group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze
the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution
parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of
the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2−and 1/2− resonances and leads to
an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon
experimental data. We find remarkably good agreement with measured differential cross sections at various
energies below the d-3H threshold, while analyzing powers manifest larger deviations from experiment for
certain energies and angles.

DOI: 10.1103/PhysRevC.88.054622 PACS number(s): 21.60.De, 25.10.+s, 27.10.+h, 27.20.+n

I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3–7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8–11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12–15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16–19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21–26] expansions in (A−a, a) binary-cluster
wave functions, where each cluster of nucleons is described

*hupin1@llnl.gov
†joachim.langhammer@physik.tu-darmstadt.de
‡navratil@triumf.ca
§quaglioni1@llnl.gov
∥angelo.calci@physik.tu-darmstadt.de
¶robert.roth@physik.tu-darmstadt.de

within the ab initio NCSM [27–30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects

054622-10556-2813/2013/88(5)/054622(16) ©2013 American Physical Society
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Building blocks of the NCSMC equations 
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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n-4He scattering with NCSMC 
G. Hupin, S. Quaglioni and P. Navrátil, work in progress 

•  The convergence pattern looks good. 
•  The experimental phase-shifts are 

well reproduced. 
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How about 7He as n+6He?  
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•  All 6He excited states above 2+
1 broad resonances or states in continuum 

•  Convergence of the NCSM/RGM n+6He calculation slow with number of 6He states 
•  Negative parity states also relevant  
•  Technically not feasible to include more than ~ 5 states 



NCSM with continuum: 7He       6He+n 
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NCSM with continuum: 7He       6He+n 
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NCSMC 
with three 6He states 

and ten 7He eigenstates 
More 7-nucleon correlations 
Fewer 6He-core states needed 
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Experimental controversy:  
Existence of low-lying 1/2- state  
… not seen in these calculations 

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 

Structure of 9Be 
in collaboration with Joachim Langhammer et al. 
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 
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•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 

•  Without the 3N the 5/2- and 1/2-  
     resonances reversed! 
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•  The unnatural parity states are predicted too high in the 
NCSM calculations. Is this a HO basis size problem? Is 
this an interaction dependent problem?   

Structure of 9Be 
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NCSM calculations. Is this a HO basis size problem? Is 
this an interaction dependent problem?   

Structure of 9Be 

33 −3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

En
er

gy
 (M

eV
)

9Be

n+8Be

N3LO NN+3NF(400)
SRG Λ = 2.0 fm−1

h- Ω = 20 MeV

NCSM NCSMCExpt

1/2+

5/2+

3/2+

9/2+

11h- Ω

Breakup thresholds impact S-waves  
Continuum important for other 

waves as well 

0 1 2 3 4 5 6 7 8 9 10
Ekin [MeV]

-90

-60

-30

0

30

60

90

120

150

180

δ 
[d

eg
] 2S1/2

2D3/2

2D5/2
6D9/2

4S3/2

6S5/2

NCSMC  
n-8Be(0+,2+) + 9Be 

Need to switch to NCSMC! 

preliminary 

preliminary 

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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•  Limited information about the structure of 
proton rich 11N – mirror nucleus of 11Be 
halo nucleus 

•  Incomplete knowledge of 10C unbound 
excited states 

p+10C scattering: structure of 11N resonances 
in collaboration with Joachim Langhammer et al. 

34 



•  New experiment at ISAC TRIUMF with reaccelerated 10C 
–  The first ever 10C beam at TRIUMF 
–  Angular distributions measured at ECM ~ 4.1 MeV and 4.4 MeV 

•  NCSMC calculations including chiral 3N under way 
–   p-10C(0+,2+,2+)+11N       (Nmax= 7 so far) 

p+10C scattering: structure of 11N resonances 
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Fig. 4. The lowest 1/2+ , 3/2+ and 5/2+ states in N = 11 isotones 17C and 21Ne.
The values on the arrows represent the B(M1) value of the transition [×10−2µ2

N].
The B(M1) values for the γ decays of the 5/2+ and 1/2+ states in 21Ne are from
Ref. [32] and Ref. [33], respectively.

useful hints about how the similarities and departures between 17C
and 21Ne will arise.

According to the Nilsson model, prolate deformation promotes
lowering of the [211]3/2 orbital down to the Fermi surface in a
system of N = 11. This expectation is in harmony with the spin-
parity assignments of 3/2+ , which are experimentally established
for the ground states of both the isotones. In the case of 21Ne the
low-lying 3/2+ and 5/2+ states are thus interpreted as members
of the same rotational band built on the [211]3/2 orbital [27,28],
well describing associated properties observed. As shown in Fig. 4
the locations of the 3/2+ and 5/2+ states as well as the connect-
ing M1 strength are almost identical between the isotones of 17C
and 21Ne. Hence it is probable that the 17C states concerned can
be as well ascribed to rotational band members of the [211]3/2
orbital, implying prevalence of deformation in 17C. In fact this pos-
sibility is supported by the large deformation length observed for
the relevant excitation in the proton inelastic scattering on 17C [2].

As for the cases of the 1/2+ states, the 21Ne state has been in-
terpreted as the head of the rotational band built on the [211]1/2
Nilsson orbital [27,29]. For this orbital, admixture of 1d5/2 and
1d3/2 components is expected to increase as the prolate deforma-
tion is promoted [27]. As a matter of fact this feature is in harmony
with the relatively large strength experimentally observed for the
M1 transition to the ground state, where the d-wave neutron ad-
mixed in the [211]1/2 orbital is allowed to decay into the [211]3/2
orbital, which is solely comprised of the 1d5/2 and 1d3/2 compo-
nents [27]. In this context we notice a unique situation for the
1/2+ state of 17C that it is barely bound with a neutron separa-
tion energy of 0.52 MeV in contrast to the 21Ne partner state with
fairly sound binding of 3.97 MeV [18]. Such a loosely bound 1/2+

state tends to be subject to occurrence of halo structure, resulting
in drastic change in wave function. Namely, in a nuclear state with
extremely weak binding the component of 2s1/2 neutron will be-
come more favored than the other components of higher orbital
angular momenta since the former will gain more in the binding
energy due to enhanced spatial extension involved [30,31]. One
may thus anticipate appreciable increase of the 2s1/2 component
in the [211]1/2 orbital in 17C, reducing components of 1d5/2 and
1d3/2 neutrons. Naturally, the increased contribution of the 2s1/2
component should lead to the lowering of excitation energy for the
1/2+ state. Moreover, the altered configuration may cause consid-
erable suppression of the M1 transition to the ground state, since

the 2s1/2 component alone cannot connect via allowed M1 transi-
tion with the d-wave components which may be predominant for
the ground state.

We have so far seen that qualitative features of the low-lying
levels in 17C may be roughly explained in terms of naive Nilsson
schemes. It is particularly notable that the simple conjecture of
the deformed [211]1/2 orbital with halo effects appears to afford a
consistent account for the various anomalous features observed for
the 17C 1/2+ state. We however note that a mean-field calculation
on 17C indicated several local minima with rather shallow poten-
tials, suggesting complexities involved in the collective phenomena
of this isotone. The results of the present study are hence stimu-
lating further studies on the exotic low-lying structure of 17C from
both experimental and theoretical sides.

In summary, the mean lifetimes of the first and second ex-
cited states of 17C, respectively at 212 keV and 333 keV, were
determined with the recoil shadow method to be 583 ± 21(stat) ±
35(syst) ps and 18.9 ± 0.6(stat) ± 4.7(syst) ps. Based on the elec-
tromagnetic strengths deduced, the observed deexcitations to the
ground state were concluded to occur predominantly via M1 tran-
sitions, supporting spin-parity assignments of 1/2+ and 5/2+ for
the first and second excited states proposed by earlier works. The
B(M1) values were then deduced to be (1.0 ± 0.1) × 10−2µ2

N
and (8.2+3.2

−1.8) × 10−2µ2
N, respectively, for the 212-keV and 333-keV

transitions. The M1 strength and excitation energy observed for the
5/2+ state are found to be very similar between 17C and 21Ne, sug-
gesting prevalence of deformation in 17C as well as in 21Ne. On the
other hand, the behavior of the 1/2+ state is found to be remark-
ably different in the two isotones. Naive Nilsson-model considera-
tions support a conjecture that sizable reduction of M1 strength
as well as the much lowered excitation energy characteristic of
the 17C 1/2+ state may be related to halo effects anticipated for
a loosely bound deformed orbital.
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Fig. 4. The lowest 1/2+ , 3/2+ and 5/2+ states in N = 11 isotones 17C and 21Ne.
The values on the arrows represent the B(M1) value of the transition [×10−2µ2

N].
The B(M1) values for the γ decays of the 5/2+ and 1/2+ states in 21Ne are from
Ref. [32] and Ref. [33], respectively.

useful hints about how the similarities and departures between 17C
and 21Ne will arise.

According to the Nilsson model, prolate deformation promotes
lowering of the [211]3/2 orbital down to the Fermi surface in a
system of N = 11. This expectation is in harmony with the spin-
parity assignments of 3/2+ , which are experimentally established
for the ground states of both the isotones. In the case of 21Ne the
low-lying 3/2+ and 5/2+ states are thus interpreted as members
of the same rotational band built on the [211]3/2 orbital [27,28],
well describing associated properties observed. As shown in Fig. 4
the locations of the 3/2+ and 5/2+ states as well as the connect-
ing M1 strength are almost identical between the isotones of 17C
and 21Ne. Hence it is probable that the 17C states concerned can
be as well ascribed to rotational band members of the [211]3/2
orbital, implying prevalence of deformation in 17C. In fact this pos-
sibility is supported by the large deformation length observed for
the relevant excitation in the proton inelastic scattering on 17C [2].

As for the cases of the 1/2+ states, the 21Ne state has been in-
terpreted as the head of the rotational band built on the [211]1/2
Nilsson orbital [27,29]. For this orbital, admixture of 1d5/2 and
1d3/2 components is expected to increase as the prolate deforma-
tion is promoted [27]. As a matter of fact this feature is in harmony
with the relatively large strength experimentally observed for the
M1 transition to the ground state, where the d-wave neutron ad-
mixed in the [211]1/2 orbital is allowed to decay into the [211]3/2
orbital, which is solely comprised of the 1d5/2 and 1d3/2 compo-
nents [27]. In this context we notice a unique situation for the
1/2+ state of 17C that it is barely bound with a neutron separa-
tion energy of 0.52 MeV in contrast to the 21Ne partner state with
fairly sound binding of 3.97 MeV [18]. Such a loosely bound 1/2+

state tends to be subject to occurrence of halo structure, resulting
in drastic change in wave function. Namely, in a nuclear state with
extremely weak binding the component of 2s1/2 neutron will be-
come more favored than the other components of higher orbital
angular momenta since the former will gain more in the binding
energy due to enhanced spatial extension involved [30,31]. One
may thus anticipate appreciable increase of the 2s1/2 component
in the [211]1/2 orbital in 17C, reducing components of 1d5/2 and
1d3/2 neutrons. Naturally, the increased contribution of the 2s1/2
component should lead to the lowering of excitation energy for the
1/2+ state. Moreover, the altered configuration may cause consid-
erable suppression of the M1 transition to the ground state, since

the 2s1/2 component alone cannot connect via allowed M1 transi-
tion with the d-wave components which may be predominant for
the ground state.

We have so far seen that qualitative features of the low-lying
levels in 17C may be roughly explained in terms of naive Nilsson
schemes. It is particularly notable that the simple conjecture of
the deformed [211]1/2 orbital with halo effects appears to afford a
consistent account for the various anomalous features observed for
the 17C 1/2+ state. We however note that a mean-field calculation
on 17C indicated several local minima with rather shallow poten-
tials, suggesting complexities involved in the collective phenomena
of this isotone. The results of the present study are hence stimu-
lating further studies on the exotic low-lying structure of 17C from
both experimental and theoretical sides.

In summary, the mean lifetimes of the first and second ex-
cited states of 17C, respectively at 212 keV and 333 keV, were
determined with the recoil shadow method to be 583 ± 21(stat) ±
35(syst) ps and 18.9 ± 0.6(stat) ± 4.7(syst) ps. Based on the elec-
tromagnetic strengths deduced, the observed deexcitations to the
ground state were concluded to occur predominantly via M1 tran-
sitions, supporting spin-parity assignments of 1/2+ and 5/2+ for
the first and second excited states proposed by earlier works. The
B(M1) values were then deduced to be (1.0 ± 0.1) × 10−2µ2

N
and (8.2+3.2

−1.8) × 10−2µ2
N, respectively, for the 212-keV and 333-keV

transitions. The M1 strength and excitation energy observed for the
5/2+ state are found to be very similar between 17C and 21Ne, sug-
gesting prevalence of deformation in 17C as well as in 21Ne. On the
other hand, the behavior of the 1/2+ state is found to be remark-
ably different in the two isotones. Naive Nilsson-model considera-
tions support a conjecture that sizable reduction of M1 strength
as well as the much lowered excitation energy characteristic of
the 17C 1/2+ state may be related to halo effects anticipated for
a loosely bound deformed orbital.
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We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the
no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear
fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave
functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions
by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give
algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-
group evolved chiral nucleon-nucleon potential, we apply the method to a 4He + n + n description of 6He and
compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the
harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a
measure of core (4He) polarization effects.
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I. INTRODUCTION

In nuclear physics, ab initio approaches seek to solve the
many-body Schrödinger equation in terms of constituent pro-
tons and neutrons interacting through nucleon-nucleon (NN )
and three-nucleon (3N ) forces that yield a high-precision fit
of two- and three-body data. Their aim is twofold: first, to
help unfold the true nature of the force among nucleons and,
second, to arrive at a fundamental understanding of nuclei and
their role in the universe.

In three- and four-nucleon systems, where a numerically
exact solution of the quantum-mechanical problem for both
negative [1] and positive energies [2] is now possible, this
goal has been largely achieved. For heavier systems, ab initio
calculations have been mostly confined to the description
of the bound-state properties of stable nuclei but are now
starting to be extended to dynamical processes between nuclei.
The Green’s function Monte Carlo method has been used to
describe the elastic scattering of neutrons on 4He [3] and to
compute asymptotic normalization coefficients [4] and nuclear
widths [5]. Loosely bound and unbound nuclear states have
been addressed within the coupled-cluster technique [6,7] by
using a Berggren basis and this method has recently been
applied to compute elastic proton scattering on 40Ca [8].

An ab initio framework that promises to provide a unified
treatment of a wide range of nuclear phenomena (well-bound
states, loosely bound and unbound exotic nuclei, scattering
and reaction observables) is the no-core shell model with
continuum (NCSMC) [9,10]. Here, the nuclear many-body
states are seen as superimpositions of continuous (A − a, a)
binary-cluster wave functions in the spirit of the resonating-
group method (RGM) [11–16] and square-integrable eigen-
states of the A-nucleon system, in which each cluster of
nucleons and the compound nuclear states are obtained within

*quaglioni1@llnl.gov
†cromeroredondo@triumf.ca
‡navratil@triumf.ca

the ab inito no-core shell model (NCSM) [17,18]. So far, we
have laid the foundations of the NCSMC by developing the
formalism to compute nucleon-nucleus collisions and applying
it to the description of the unbound 7He nucleus. However,
expansions on the NCSM/RGM portion of the basis [19,20]
have already been successfully used to describe nucleon [21]
and deuteron [22] scattering on light nuclei and achieve the
first ab initio description of 7Be(p, γ )8B radiative capture [23]
and 3H(d, n)4He and 3He(d, p)4He fusion rates [24], based
on realistic NN interactions. Work is currently under way to
incorporate the 3N force into this binary-reaction formalism
and to attain the description of deuteron-nucleus scattering and
transfer reactions within the NCSMC approach.

Achieving an ab initio treatment of three-cluster dynamics
is another important stepping stone towards gaining a basic
understanding of nuclei and their reactions. To cite a few
instances, important nuclear fusion processes such as the
3H(3H, 2n)4He or 3He(3He, 2p)4He reactions are character-
ized by three-body final states. In addition, only with an
approach capable of accounting for three-cluster configura-
tions can one obtain an accurate description of Borromean
nuclei, ternary systems of two nucleons orbiting around a
tightly bound core whose components are not bound in pairs.
Finally, three-body configurations can be necessary even at
very low energy to achieve a proper treatment of polarization
and virtual excitations of breakup channels in reactions with
weakly bound projectiles such as the deuteron.

Microscopic three-cluster models, where all nucleons are
taken into account and the Pauli principle is treated exactly,
have been used for some time, particularly in combination with
the hyperspherical formalism for the solution of the dynamic
equations [25–30]. However, they have two main limitations:
the use of central NN potentials with state-dependent param-
eters adjusted to reproduce the binding energy of the system
under study, occasionally complemented with a spin-orbit in-
teraction; and a simplified description of the internal structure
of the clusters, which are in most cases described by s-shell
wave functions. In this paper, we report on an extension of the
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FIG. 4. (Color online) Dependence of the NCSM/RGM calcu-
lated 6He g.s. energy at Nmax = 6 as a function of the maximum
value of the hypermomentum Kmax used in the HH expansion. For
these calculations we used a matching radius of a = 20 fm, N = 30
Lagrange mesh points, and an extended HO model space of Next = 40.

of the norm, which had never been observed in our previous
binary-cluster NCSM/RGM calculations.

We then expanded the orthogonalized NCSM/RGM equa-
tion, (10), in HH functions and solved the nonlocal hyper-radial
equations (17) for the 4He + n + n relative motion imposing
bound-state boundary conditions, by using the R-matrix
method on a Lagrange mesh from Sec. II D. We found a
single bound state in the J πT = 0+1 channel and proceeded
to study the behavior of our results at fixed Nmax with respect
to the remaining parameters of the calculation. Given the
large scale of this computation, we performed this study at
Nmax = 6. The rate of convergence of the bound state with
respect to the size of the adopted HH model space can be
judged by examining Fig. 4, where we present a study of the
calculated g.s. energy as a function of the maximum value of
the hypermomentum Kmax. The results start to stabilize around
Kmax = 14 and are fully converged already at Kmax = 20. At
a given Nmax, the calculation is variational in Kmax. Then
we studied the stability of the g.s. energy with respect to
the selection of the matching radius a, and we found that
it was good as long as we chose values larger than 20 fm. The
number N of mesh points required for a good convergence of
the Lagrange expansion depends on the value of the matching
radius. For a = 20 fm, about 30 mesh points are enough, while
a larger number is needed if the matching radius is increased.
The choice of the N value also depends somewhat on the
size of the extended HO model space Next used to represent
the Dirac’s δ function in the y (y ′) coordinate (proportional
to the distance between the centers of mass of the 4He and
the two neutrons) while calculating the interaction kernel of
Eq. (39). Larger Next values correspond to a larger y range
for this potential kernel, which is localized only in the x (x ′)
coordinate. About 30 (40) mesh points are sufficient to reach
convergence up to Next = 30 (Next = 70). The behavior of
the g.s. energy as a function of Next is presented in Fig. 5.
As shown, an extended HO basis size of at least Next = 40
is needed to accommodate the long range of this interaction
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FIG. 5. (Color online) Dependence of the NCSM/RGM calcu-
lated 6He g.s. energy at Nmax = 6 as a function of the size of
the extended HO model space Next used for the calculation of the
interaction kernel of Eq. (39). For these calculations we used a
hypermomentum of Kmax = 20, a matching radius of a = 20 fm, and
N = 30 (N = 40) Lagrange mesh points for Next ! 30 (Next > 30).

kernel. Disregarding this effect by computing Eq. (39) within
the adopted HO model space (i.e., with Next = Nmax) leads to
about 200 keV underbinding in the 6He g.s. energy. Finally, a
stable result for the integrations in the hyperangles α and α′ of
Eq. (18), which we perform numerically using a Chebyshev-
Gauss quadrature (for Chebyshev polynomials of the second
kind), was obtained with 20 mesh points. Based on this analysis
and to ensure that convergence is reached, we adopted a
matching radius of a = 30 fm with N = 70 mesh points,
a hypermomentum Kmax = 28, and an extended HO model
space of Next = 60 for our larger Nmax calculations (including
the largest with Nmax = 12) presented in the following. In
Fig. 6 the main components of the radial part of the relative
motion wave function uJ π T

Kν of the 0+ g.s. of 6He are shown
for different values of the HO basis size Nmax used for the
expansions of the 4He wave function and localized elements
of the integration kernels. In the present calculation, each
component is uniquely identified by the quantum numbers
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FIG. 6. (Color online) The three main components of the radial
part of the 6He g.s. wave functions uKν(ρ) for Nmax = 6, 8, 10, and 12.
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FIG. 2. (Color online) Convergence behavior of calculated 4He+n+n (a) J⇡ = 1� and (b) 0+ eigenphase shifts at K
max

= 19
and 28, respectively, and (c) 2+ and (d) 1+ diagonal phase shifts at K

max

= 20 with respect to the size N
max

of the NCSM/RGM
model space. For these calculations we used a matching radius of a = 30 fm, N = 60 Lagrange mesh points, and an extended
HO model space of N

ext

= 70. In panel (a), a 1� phase shift obtained with the SRG evolution parameter ⇤ = 1.8 fm�1 is
shown for comparison, it corresponds to a N

max

= 11 calculation.

is achieved for a maximum value of the hypermomentum
of K

max

=16-28 depending on the channel under study.
This convergence is extremely well-behaved and proves
(3) to be a reliable expansion for the relative motion wave
functions �J

⇡

T

⌫

(⇢,↵).

The convergence in the HO basis size N
max

is shown in
Fig. 2. It can be observed that the convergence pattern
is not the same for di↵erent phase shifts. For some phase
shifts convergence is reached at N

max

=13, however, for
others this value (which represents our current computa-
tional limit) is not enough. Nevertheless, the qualitative
behaviour of the phase shifts is converged providing im-
portant information about the continuum structure of
the system.

At last, we proceed to study the dependence on N
ext

which was fixed for the previous results. We find that the
increase on N

ext

requires at the same time incrementing
the matching radius in order to reach the asymptotic be-
havior. In Fig. 3, the dependence is shown, for each
value of N

ext

, the matching radius a and the number of
Lagrange mesh points (N) were chosen so that conver-
gence in those two parameters is reached. The figure
shows that, depending on the channel under study, the
convergence pattern di↵ers, e.g., it is completely irrele-
vant for the phase shift bearing the second 2+ resonance,
while it is noticeable for the one of the first 2+. For the

0+ the dependence is even bigger, however, the qualita-
tive results remain unchanged.

As a consistency check, we verified that the binding
energy of the 0+ ground state of 6He calculated in [6]
remains unchanged within this study, in which di↵erent
parameters have been pushed further.

We calculated the phase shifts with a potential given
by a di↵erent value of the evolution parameter ⇤, in par-
ticular we used ⇤ = 1.8 fm�1. This potential is harder
than the one obtained with ⇤ = 1.5 fm�1, therefore, cal-
culations with this potential converge slower. Computa-
tional resources presently available do not allow to reach
converge results with such potential. However, these cal-
culations, even if not completely converged, provide im-
portant information about our results. With this new
potential we see the same structure of the continuum
states for 6He, i.e., the same number of resonances ap-
pear in each channel. These resonances emerge with sim-
ilar widths, however they present some energy shift (less
than 1 MeV) respect to the ones obtained with the poten-
tial evolved with ⇤ = 1.5 fm�1. Despite this fact, these
calculations evidence that the qualitative results remain
unchanged, which indicates that the softness of the po-
tential used is not introducing any spurious resonances
and, therefore, verifies the reliability of our results. As
an example, in Fig. 2 we show the phase shift obtained
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Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to three-body clusters (6He ~ 4He+n+n) 
 

 

•  Outlook: 
–  Extension to composite projectiles (deuteron, 3H, 3He, 4He) 
–  Composite-projectile reactions on targets heavier than 4He  
–  Transfer reactions 
–  Bremsstrahlung and capture reactions 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  
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