

NUCLEAR PHYSICS FROM LATTICE QCD

U. van Kolck

Institut de Physique Nucléaire d'Orsay and University of Arizona

Supported by CNRS and US DOE

Outline

- QCD at Low Energies and the Lattice
- Nuclear Effective Field Theories
- EFT for Lattice Nuclei
- Outlook and Conclusion

Derivation of nuclear physics consistent with Standard Model (SM) of particle physics

- <mark>o</mark> correct symmetries
- o systematic

Nucleus as the simplest complex system: quarks and gluons interacting strongly, yet exhibiting many regularities

- QCD at large distances an unsolved part of the SM
- tools for non-perturbative quantum (field) theories, e.g. cold atoms

Nucleus as a laboratory: properties of the SM and beyond

- nuclear matrix elements for symmetry tests
- reaction rates for nucleosynthesis
- equation of state for stellar structure
- variation of parameters for cosmology

Effective Field Theory

QCD

Lattice QCD

nucleon

two-step strategy

I) fit LECs for $A \le a \sim 3, 4$ $m_{\pi} \ge M_{\pi} \sim 300, 400 \text{ MeV}$

 $b \ll 1/M_{QCD}$ [

 $1/M_{QCD} \approx 0.3 \text{ fm}$

 $1/M_{\pi}$ $\rho(M_{\pi}/f_{\pi})a^{1/3}/M_{\pi}$ $L \gg \rho \left(\frac{M_{\pi}}{f_{\pi}} \right) a^{1/3} / M_{\pi}$

Extrapolation in pion mass

Pionful (Chiral) EFT $Q \sim m_{\pi} \ll M_{QCD}$

degrees of freedom: nucleons, pions, Deltas (+ Roper + ?)

$$m_{\Delta} - m_N \sim 2m_{\pi} \left(m_{N'} - m_N \sim 3m_{\pi}, \ldots \right)$$

symmetries: Lorentz,
$$P$$
, T , chiral $D_{\mu} = \frac{1}{1 + \pi^2/4f_{\pi}^2} \partial_{\mu} D_{\mu} = \partial_{\mu} + \frac{\iota}{2f_{\pi}^2} (\pi \times D_{\mu}\pi) \cdot \mathbf{t}^{(I)}$

$$\mathcal{L}_{EFT} = \frac{1}{2} D_{\mu} \boldsymbol{\pi} \cdot \boldsymbol{D}^{\mu} \boldsymbol{\pi} - \frac{m_{\pi}^2}{2} \frac{\boldsymbol{\pi}^2}{1 + \boldsymbol{\pi}^2 / 4f_{\pi}^2} + N^+ \left(i \mathcal{D}_0 + \frac{\vec{\mathcal{D}}^2}{2m_N} \right) N + \frac{g_A}{2f_{\pi}} N^+ \vec{S} \boldsymbol{\tau} N \cdot \cdot \vec{D} \boldsymbol{\pi} + C_0 N^+ N N^+ N + C_2' N^+ N \left(\vec{\mathcal{D}} N^+ \right) \cdot \vec{\mathcal{D}} N + \dots \quad \text{other spin/isospin},$$

• expansion in: $\frac{Q}{M_{QCD}} \sim \begin{cases}
Q/m_N & \text{non-relativistic} \\
Q/m_\rho, \dots & \text{multipole} \\
Q/4\pi f_{\pi} & \text{pion loop}
\end{cases} \sim \frac{1}{5}$

other spin/isospin, more derivatives, powers of pion mass, Deltas (Ropers, ...), *etc.*

Weinberg '90, '92 Ordonez + v.K. '92 A-nucleon irreducible VS. A-nucleon reducible: $\frac{1}{\Delta E} \sim \frac{m_N}{O^2}$ infrared enhancement $(T^{(0)})$ Nuclear scale arises in QCD

 $M_{nuc} = \mu_{\pi} \approx f_{\pi} \ll M_{QCD}$

Nuclear scale arises in QCD due to spontaneous chiral symmetry breaking

www.getcliparts.com

$$Q \sim \aleph \sim \frac{m_{\pi} - m_{\pi}^{*}}{m_{\pi}^{*}} \mu_{\pi} < \mu_{\pi} \leq m_{\pi}$$

e.g.
$$m_{\pi} \simeq 140 \text{ MeV}$$

 $m_{\pi} > Q \sim \mu_{\pi}$

e.g. $m_{\pi} \sim 500 \text{ MeV}$

- degrees of freedom: nucleons
- symmetries: Lorentz, P, T

• expansion in:
$$\frac{Q}{M_{\pi}} = \begin{cases} Q/m_N & \text{non-relativistic} \\ Q/m_{\pi}, \cdots & \text{multipole} \end{cases}$$

Universality: first orders apply also to neutral atoms

$$M_{\pi} \rightarrow 1/l_{vdW}$$
 where $V(r) = -\frac{l_{vdW}^4}{2mr^6} + \dots$

Bedaque, Hammer + v.K. '99'00 Bedaque, Braaten + Hammer '01

Bedaque + v.K. '97

enough to renormalize singular perturbations

s = 0, 1

l = 0

etc.

www.getcliparts.com

...

Extrapolation in nucleon number

 $m_{\pi} \ll M_{QCD} \quad \left\{ \begin{array}{c} \text{Pionful EFT} \\ \\ \text{Pionless EFT} \end{array} \right\} \quad m_{\pi} \sim M_{QCD} \end{array}$

+ <u>any</u> "exact" *ab initio* method

That is,

 truncate EFT expansion at desired order
 solve Schrödinger equation for low A at fixed cutoff (exactly for LO, subLOs in perturbation theory)
 fit LECs to selected lattice input
 solve Schrödinger equation for larger A
 repeat steps 2-4 at other cutoffs
 obtain observables at large cutoffs

Ab initio methods employed so far

Effective-Interaction Hyperspherical Harmonics (EIHH) Barnea et al. '00' 01

- hyperspherical coordinates: hyperradius + 3A-4 hyperangles
- ✓ model space: hyperangular momentum $K \le K_{max}$
- ✓ wavefunction: expanded in antisymmetrized spin/isospin states
- ✓ effective interaction: Lee-Suzuki projection to subspace "in medium"
- ✓ extrapolation: K_{max} → ∞

Auxiliary-Field Diffusion Monte Carlo (AFDMC)

Schmidt + Fantoni '99

- integral equation for evolution of wavefunction in imaginary time in terms of Green's function
- two- and more-body operators linearized by auxiliary fields (Hubbard-Stratonovich transformation)
- trial wavefunction probed stochastically with weight given by free Green's function
- ✓ lowest-energy state with symmetry of trial wavefunction projected into as τ -> ∞

LQCD data

m_{π}	140	510	805	805
Nucleus	[Nature]	[5]	[6]	[This work]
n	939.6	1320.0	1634.0	1634.0 *
р	938.3	1320.0	1634.0	1634.0
nn	-	7.4 ± 1.4	15.9 ± 3.8	$15.9 \pm 3.8 *$
D	2.224	11.5 ± 1.3	19.5 ± 4.8	19.5 \pm 4.8 *
³ n	-			-
$^{3}\mathrm{H}$	8.482	20.3 ± 4.5	53.9 ± 10.7	53.9 \pm 10.7 *
$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7	53.9 ± 10.7
$^{4}\mathrm{He}$	28.30	43.0 ± 14.4	107.0 ± 24.2	
$^{5}\mathrm{He}$	27.50	[5] Vomorali:	a + a / 12	
⁵ Li	26.61	[5] Yamazaki <i>et al.</i> 12 [6] Beane <i>et al.</i> '12		
⁶ Li	32.00	[This work] Barnea <i>et al.</i> '13		

LO pionless fit: m_N, C_{01}, C_{10}, D_1

Beane et al. '13

 $a^{(^{1}S_{0})} = 2.33^{+0.19+0.27}_{-0.17-0.20} \text{ fm} , r^{(^{1}S_{0})} = 1.130^{+0.071+0.059}_{-0.077-0.063} \text{ fm}$ $a^{(^{3}S_{1})} = 1.82^{+0.14+0.17}_{-0.13-0.12} \text{ fm} , r^{(^{3}S_{1})} = 0.906^{+0.068+0.068}_{-0.075-0.084} \text{ fm}$

Barnea, Contessi, Gazit, Pederiva + v.K. '13

$$H^{(0)} = -\frac{1}{2m_N} \sum_i \nabla_i^2$$

+ $\frac{1}{4} \sum_{i < j} \left[\left(3C_{10}(\Lambda) + C_{01}(\Lambda) \right) + \left(C_{10}(\Lambda) - C_{01}(\Lambda) \right) \vec{\sigma}_i \cdot \vec{\sigma}_j \right] e^{-\Lambda^2 r_{ij}^2/4}$
+ $\sum_{i < j < k} \sum_{cyc} D_1(\Lambda) \mathbf{\tau}_i \cdot \mathbf{\tau}_j e^{-\Lambda^2 \left(r_{ij}^2 + r_{jk}^2 \right)/4}$

TABLE III. The LO LECs [GeV] for lattice nuclei at $m_{\pi} = 805 \text{ MeV}$, as a function of the momentum cutoff Λ [fm⁻¹].

Λ	$C_{1,0}$	$C_{0,1}$	D_1
2	-0.1480	-0.1382	-0.07515
4	-0.4046	-0.3885	-0.3902
6	-0.7892	-0.7668	-1.147
8	-1.302	-1.273	-2.648

Barnea, Contessi, Gazit, Pederiva + v.K. '13

no excited states for A = 2,3,4

• r	10 ³ n	drop	let
-----	-------------------	------	-----

m_{π}	140	510	805	805	
Nucleus	[Nature]	[5]	[6]	[This work]	
n	939.6	1320.0	1634.0	1634.0 *	
р	938.3	1320.0	1634.0	1634.0	
nn	-	7.4 ± 1.4	15.9 ± 3.8	$15.9 \pm 3.8 *$	
D	2.224	11.5 ± 1.3	19.5 ± 4.8	19.5 \pm 4.8 *	
^{3}n	-			-	
зH	8.482	20.3 ± 4.5	53.9 ± 10.7	53.9 \pm 10.7 *	
$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7	53.9 ± 10.7	
$^{4}\mathrm{He}$	28.30	43.0 ± 14.4	107.0 ± 24.2	89 ± 36	
$^{5}\mathrm{He}$	27.50	[5] Yamazaki <i>et al.</i> '12 [6] Beane <i>et al.</i> '12 [This work] Barnea <i>et al.</i> '13		98 ± 39	
⁵ Li	26.61			98 ± 39	
⁶ Li	32.00			122 ± 50	

predictions

What next?

- > NLO at m_{π} = 805 MeV
- > LO at m_{π} = 510 MeV

Iarger A with AFDMC

 \geq

> chiral EFT at lower pion masses when available

Conclusion

 EFT is constrained *only* by symmetries and thus can be matched onto lattice QCD

EFT allows controlled extrapolations in both pion mass and nucleon number

World at large pion mass might be just a denser version of ours