Shell-model derivation of the shears mechanism

P. Van Isacker, GANIL, France A.O. Macchiavelli*, Lawrence Berkeley National Laboratory, US

Bands without deformation

Regular sequences of levels (bands) are usually associated with nuclear collective behaviour.

In several regions of the nuclear chart in the neighbourhood of closed-shells nuclei regular bands are observed.

An example: 199Pb

G. Baldsiefen et al., Nucl. Phys. A 574 (1994) 521

Regular sequences

rotational band in superdeformed ¹⁹⁴Pb

Dipole workshop, GANNL, October 2013

Shears bands

Question: How can sequences of levels appear rotational when deformation is weak?

Answer: Through the shears mechanism. This implies strong in-band M1 transitions.

The shears mechanism

S. Frauendorf et al., Nucl. Phys. A 601 (1996) 41

Dipole workshop, GANIL. October 2013

Semi-classical interpretation

Schematic model in terms of the coupling of two vectors J_{ν} and J_{π} and a 'shears' angle

$$\theta_{v\pi} = \arccos \frac{J(J+1) - J_v(J_v+1) - J_\pi(J_\pi+1)}{2\sqrt{J_v(J_v+1)J_\pi(J_\pi+1)}}$$

An effective interaction of the form

$$V(\theta_{\nu\pi}) = V_0 + V_2 P_2(\cos\theta_{\nu\pi}) + \cdots$$

→ Can this geometry of the shears mechanism be derived from the spherical shell model?

A shell-model configuration

Assume a shears band in terms of two neutron particles and two proton holes:

$$|N\rangle \equiv |j_{\nu}j_{\nu}';J_{\nu}\rangle \quad \& \quad |P^{-1}\rangle \equiv |j_{\pi}^{-1}j_{\pi}'^{-1};J_{\pi}\rangle \Longrightarrow |NP^{-1};J\rangle$$

How do the energies of these states evolve as a function of J?

How does this evolution depends on the angular momenta of the single-particle orbits and on the angular momenta of the 'blades'?

Take
$$j_{\nu}=j'_{\nu}$$
 and $j_{\pi}=j'_{\pi}$.

Dipole workshop, GANIL, October 2013

The shears matrix element

Consider a hamiltonian of the generic form

$$\hat{H} = \hat{H}_{v} + \hat{H}_{\pi} + \hat{V}_{v\pi}$$

The relative shears-band energies depend only on the neutron-proton interaction:

$$\frac{\left\langle NP^{-1};J\middle|\hat{V}_{v\pi}\middle|NP^{-1};J\right\rangle}{\left(2J_{v}+1\right)\left(2J_{\pi}+1\right)}$$

$$= -4\sum_{R} (2R+1)V_{j_{v}j_{\pi},j_{v}j_{\pi}}^{R} \begin{cases} j_{v} & j_{\pi} & J_{\pi} & J_{v} \\ R & j_{\pi} & J & j_{v} \\ j_{v} & j_{\pi} & J_{\pi} & J_{v} \end{cases}$$

Dipole workshop, GANIL, October 2013

The non-shears matrix element

The corresponding matrix element for a particleparticle or hole-hole configuration:

$$\frac{\langle NP; J | \hat{V}_{v\pi} | NP; J \rangle}{(2J_v + 1)(2J_{\pi} + 1)} = \frac{\langle N^{-1}P^{-1}; J | \hat{V}_{v\pi} | N^{-1}P^{-1}; J \rangle}{(2J_v + 1)(2J_{\pi} + 1)}$$

$$= 4\sum_{R} (2R+1)V_{j_{\nu}j_{\pi},j_{\nu}j_{\pi}}^{R} \begin{bmatrix} j_{\nu} & j_{\pi} & J_{\pi} & J_{\nu} \\ R & j_{\pi} & J & j_{\nu} \\ j_{\nu} & j_{\pi} & J_{\pi} & J_{\nu} \end{bmatrix}$$

The classical limit

- Study the shears matrix element in the classical limit, i.e. for large angular momenta.
- Semi-classical expressions are known for Wigner (3j) and Racah (6j) coefficients but not for 3nj coefficients with n > 2.
- A field of active mathematical research with connections to graph theory, quantum gravity, spin networks...

3nj coefficients as graphs

Two kinds of 12j symbols

3j as the limit of 6j

The asymptotic formula:

$$\begin{cases} a & b & c \\ d+R & e+R & f+R \end{cases}$$

$$\xrightarrow{R\to\infty} \frac{(-)^{a+b+c+2(d+e+f)}}{\sqrt{2R}}$$

$$\times \begin{pmatrix} a & b & c \\ e-f & f-d & d-e \end{pmatrix}$$

(Semi-)classical approximations

K. Schulten & R.G. Gordon, J. Math. Phys. 16 (1975) 1961 & 1971 Dipole workshop, GANTL, October 2013

Matrix elements of MSDI

Modified surface delta interaction:

$$\hat{V}^{\text{MSDI}}(i,j) = -4\pi a_T' \delta(\bar{r}_i - \bar{r}_j) \delta(r_i - R_0) + b' \bar{\tau}_i \cdot \bar{\tau}_j + c'$$

Its matrix elements are

$$-\frac{(2j_{v}+1)(2j_{\pi}+1)}{2}\left[a_{01}\begin{pmatrix}j_{v} & j_{\pi} & R\\\frac{1}{2} & -\frac{1}{2} & 0\end{pmatrix}^{2} + a_{0}\begin{pmatrix}j_{v} & j_{\pi} & R\\\frac{1}{2} & \frac{1}{2} & -1\end{pmatrix}^{2}\right] - b + c$$

with

$$a_{01} = \frac{a_0 + a_1}{2} - (-)^{\ell_v + \ell_{\pi} + R} \frac{a_0 - a_1}{2}$$

$$a_T = a_T' C(R_0), \quad b = b' C(R_0), \quad c = c' C(R_0)$$

A simple sum

An exact result:

$$\sum_{R} (2R+1) \begin{cases} j_{\nu} & j_{\pi} & J_{\pi} & J_{\nu} \\ R & j_{\pi} & J & j_{\nu} \\ j_{\nu} & j_{\pi} & J_{\pi} & J_{\nu} \end{cases} = \frac{1}{(2J_{\nu}+1)(2J_{\pi}+1)}$$

A more complicated sum (1)

An exact result:

$$S_{n} = \sum_{R} (2R+1) \begin{pmatrix} j_{v} & j_{\pi} & R \\ \frac{1}{2} & n - \frac{1}{2} & -n \end{pmatrix}^{2} \begin{cases} j_{v} & j_{\pi} & J_{\pi} & J_{v} \\ R & j_{\pi} & J & j_{v} \\ j_{v} & j_{\pi} & J_{\pi} & J_{v} \end{cases}$$

$$= \sum_{\substack{m_{v} M_{v} \\ m_{\pi} M_{\pi}}} \begin{pmatrix} j_{v} & j_{v} & J_{v} \\ \frac{1}{2} & m_{v} & M_{v} \end{pmatrix}^{2} \begin{pmatrix} j_{\pi} & j_{\pi} & J_{\pi} \\ -n + \frac{1}{2} & m_{\pi} & M_{\pi} \end{pmatrix}^{2} \begin{pmatrix} J_{v} & J_{\pi} & J \\ M_{v} & M_{\pi} & M \end{pmatrix}^{2}$$

A more complicated sum (2)

An approximate result (Wigner):

$$\begin{pmatrix} J_{\nu} & J_{\pi} & J \\ M_{\nu} & M_{\pi} & M \end{pmatrix}^{2} \mapsto \frac{1}{4\pi A}$$

Therefore

$$S_{n} \approx \frac{1}{4\pi A} \sum_{1/2}^{1/2} \left(\frac{j_{v}}{m_{v}} + \frac{j_{v}}{M_{v}} \right)^{2} \left(\frac{j_{\pi}}{-n + \frac{1}{2}} + \frac{j_{\pi}}{m_{\pi}} + \frac{J_{\pi}}{M_{\pi}} \right)^{2}$$

$$\approx \frac{1}{4\pi (2j_{v} + 1)(2j_{\pi} + 1)A}$$

A is the area of a triangle with sides of lengths $J_{\nu}+1/2$, $J_{\pi}+1/2$ and J+1/2.

Dipole workshop, GANIL, October 2013

In terms of the shears angle

The shears angle is the angle between the angular momentum vectors of neutron particles and the proton holes:

$$\theta_{v\pi} = \arccos \frac{J(J+1) - J_v(J_v+1) - J_\pi(J_\pi+1)}{2\sqrt{J_v(J_v+1)J_\pi(J_\pi+1)}}$$

We have

$$S_n \approx \frac{2}{\pi (2j_v + 1)(2j_\pi + 1)(2J_v + 1)(2J_\pi + 1)\sin\theta_{v\pi}}$$

Another sum

Another approximate result:

$$\overline{S}_{0} = \sum_{R} (-)^{R} (2R+1) \begin{pmatrix} j_{v} & j_{\pi} & R \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}^{2} \begin{cases} j_{v} & j_{\pi} & J_{\pi} & J_{v} \\ R & j_{\pi} & J & j_{v} \\ j_{v} & j_{\pi} & J_{\pi} & J_{v} \end{cases}$$

$$\approx -(-)^{j_{v}+j_{\pi}} \frac{2}{\pi (2j_{v}+1)(2j_{\pi}+1)(2J_{v}+1)(2J_{\pi}+1)\tan\theta_{v\pi}}$$

Classical shears matrix element

We obtain for a MSDI the following classical approximation of the shears matrix element:

$$\langle NP^{-1}; J | \hat{V}_{v\pi}^{\text{MSDI}} | NP^{-1}; J \rangle \approx 4(b-c) + \frac{\alpha_{s}}{2\pi \sin \theta_{v\pi}} + \frac{\alpha_{t}}{2\pi \tan \theta_{v\pi}}$$

with

$$\alpha_{s} = 4(3a_{0} + a_{1}), \quad \alpha_{t} = 4(a_{0} - a_{1})\varphi$$

$$\varphi = \frac{1}{4}(\varphi_{v}\varphi_{\pi} + \varphi_{v}\varphi'_{\pi} + \varphi'_{v}\varphi_{\pi} + \varphi'_{v}\varphi'_{\pi})$$

$$\varphi_{\rho} = (-)^{l_{\rho} + j_{\rho}}, \quad \varphi'_{\rho} = (-)^{l'_{\rho} + j'_{\rho}}$$

Dipole workshop, GANIL, October 2013

j_{ϱ} =19/2 & j'_{ϱ} =21/2 & J_{ϱ} =20

Dipole workshop, GANIL, October 2013

j_{ϱ} =21/2 & j'_{ϱ} =21/2 & J_{ϱ} =20

Dipole workshop, GANIL, October 2013

j_{ϱ} =11/2 & j'_{ϱ} =13/2 & J_{ϱ} =12

Dipole workshop, GANIL, October 2013

j_{ϱ} =21/2 & j'_{ϱ} =21/2 & J_{ϱ} =12

Dipole workshop, GANNL, October 2013

Recall the well-known classical interpretation of a short-range nuclear matrix element.

For MSDI:

$$\langle j_{\nu} j_{\pi}^{-1}; J | \hat{V}_{\nu\pi}^{\text{MSDI}} | j_{\nu} j_{\pi}^{-1}; J \rangle \approx (b - c) + \frac{\alpha_{\text{s}}}{2\pi \sin \theta_{\nu\pi}} + \frac{\alpha_{\text{t}}}{2\pi \tan \theta_{\nu\pi}}$$

with

$$\alpha_{s} = (a_{0} + a_{1}) \left[1 + (-)^{j_{v} + j_{\pi} + J} \right] + 2a_{0} + (-)^{\ell_{v} + \ell_{\pi} + J} (a_{0} - a_{1})$$

$$\alpha_{t} = 2(-)^{j_{v} + j_{\pi} + J} a_{0} + (-)^{\ell_{v} + \ell_{\pi} + j_{v} + j_{\pi}} (a_{0} - a_{1})$$

Dipole workshop, GANIL, October 2013

Dipole workshop, GANIL, October 2013

Dipole workshop, GANIL, October 2013

Conjecture

Assume near-aligned neutron particles and near-aligned proton holes:

$$|N\rangle \equiv |j_{\nu}j_{\nu}'j_{\nu}''\ldots;J_{\nu}\rangle$$
 & $|P^{-1}\rangle \equiv |j_{\pi}^{-1}j_{\pi}''^{-1}j_{\pi}''^{-1}\ldots;J_{\pi}\rangle$

A neutron-proton short-range force has an interaction energy in the coupled state which can be approximated as

$$E(J) = \langle NP^{-1}; J | \hat{V}_{v\pi} | NP^{-1}; J \rangle \approx \frac{\alpha_{s}}{2\pi \sin \theta_{v\pi}} + \frac{\alpha_{t}}{2\pi \tan \theta_{v\pi}}$$

The coefficients $\alpha_{\rm s}$ and $\alpha_{\rm t}$ depend on the isoscalar and isovector interaction strengths.

Dipole workshop, GANIL, October 2013

A simple application

Let's accept the expression for the shears energy

$$E(J) = \frac{\alpha_{\rm s}}{2\pi \sin \theta_{\rm v\pi}} + \frac{\alpha_{\rm t}}{2\pi \tan \theta_{\rm v\pi}}$$

The head of the shears band follows from

$$\frac{\partial E}{\partial \theta_{v\pi}}\bigg|_{\theta_{v\pi}=\theta_{0}^{0}} = 0 \Rightarrow \cos\theta_{v\pi}^{0} = -\frac{\alpha_{t}}{\alpha_{s}} \quad \left(=\frac{a_{0}-a_{1}}{3a_{0}+a_{1}}\right)$$

The excitation energies of the shears-band members are given as

$$E_{x}(J) = \frac{\alpha_{s}}{2\pi \sin \theta_{v\pi}} \left(1 - \cos \theta_{v\pi}^{0} \cos \theta_{v\pi} \right) - \frac{\alpha_{s} \sin \theta_{v\pi}^{0}}{2\pi}$$

Dipole workshop, GANIL, October 2013

A simple application: 199Pb

M1 transitions

Exact result for np-nh configurations:

$$B(M1; J \rightarrow J - 1)$$

$$= \frac{3}{4\pi} \left(g_{J_{v}} - g_{J_{\pi}}\right)^{2} \frac{(C'+1)(C'-2J_{v})(C'-2J_{\pi})(C'-2J+1)}{4J(2J+1)}$$

with $C'=J_{\nu}+J_{\pi}+J$.

Classical approximation:

$$B(M1; J \to J - 1) \approx \frac{3}{4\pi} (g_{J_{\nu}} - g_{J_{\pi}})^2 \frac{(2J_{\nu} + 1)^2 (2J_{\pi} + 1)^2}{16J(2J + 1)} \sin^2 \theta_{\nu\pi}$$

M1 transitions in 199Pb

Proposed configuration of states in band 1:

$$\left[\nu \left(1i_{13/2}^{-3}\right)^{33/2} \times \pi \left(1h_{9/2}1i_{13/2}\right)^{11}\right]^{(J)}$$

Calculation of g factors:

$$v(1i_{13/2}^{-3})^{33/2}:g_{J_v}=g_{1i_{13/2}}^v=-0.29$$

$$\pi \left(1h_{9/2}1i_{13/2}\right)^{(11)} : g_{J_{\pi}} = \frac{9}{22}g_{1h_{9/2}}^{\pi} + \frac{13}{22}g_{1i_{13/2}}^{\pi} = 1.03$$

M1 transitions in ¹⁹⁹Pb

Dipole workshop, GANIL, October 2013

Conclusions and outlook

The geometry of the shears mechanism can be derived from the spherical shell model.

It establishes a connection with microscopic properties of the neutron-proton interaction and indicates the limits of application.

Outlook:

Proof of the np-nh conjecture.

Analysis of other interactions (tensor...).

Treatment of mixed configurations.