Shell-model derivation of the shears mechanism

P. Van Isacker, GANIL, France
A.O. Macchiavelli*, Lawrence Berkeley National Laboratory, US

Dipale markshok. GANV1L. Octaber 2013

Bands without deformation

Regular sequences of levels (bands) are usually associated with nuclear collective behaviour.

In several regions of the nuclear chart in the neighbourhood of closed-shells nuclei regular bands are observed.

Dipole workdapk. GAFM12. Octaber 2013

An example: ${ }^{199} \mathrm{~Pb}$

G. Baldsiefen et al., Nucl. Phys. A 574 (1994) 521

Dipole morkshok. GetN2L. October 2013

Regular sequences

Dipale markshak, GANVIL. Octaber 2013

Shears bands

Question: How can sequences of levels appear rotational when deformation is weak?

Answer: Through the shears mechanism. This implies strong in-band M1 transitions.

The shears mechanism

Semi-classical interpretation

Schematic model in terms of the coupling of two vectors J_{v} and J_{π} and a 'shears' angle

$$
\theta_{v \pi}=\arccos \frac{J(J+1)-J_{v}\left(J_{v}+1\right)-J_{\pi}\left(J_{\pi}+1\right)}{2 \sqrt{J_{v}\left(J_{v}+1\right) J_{\pi}\left(J_{\pi}+1\right)}}
$$

An effective interaction of the form

$$
V\left(\theta_{v \pi}\right)=V_{0}+V_{2} P_{2}\left(\cos \theta_{v \pi}\right)+\cdots
$$

\rightarrow Can this geometry of the shears mechanism be derived from the spherical shell model?

Dipale warkshap, GitM1 \&. Octaber 2013

A shell-model configuration

Assume a shears band in terms of two neutron particles and two proton holes:

$$
|N\rangle \equiv\left|j_{v} j_{v}^{\prime} ; J_{v}\right\rangle \quad \& \quad\left|P^{-1}\right\rangle \equiv\left|j_{\pi}^{-1} j_{\pi}^{j-1} ; J_{\pi}\right\rangle \Rightarrow\left|N P^{-1} ; J\right\rangle
$$

How do the energies of these states evolve as a function of J ?
How does this evolution depends on the angular momenta of the single-particle orbits and on the angular momenta of the 'blades'?
Take $j_{\nu}=j^{\prime}{ }_{\nu}$ and $j_{\pi}=j^{\prime}{ }_{\pi}$.
Dipole workehap. Gatn12. Octaber 2013

The shears matrix element

Consider a hamiltonian of the generic form

$$
\hat{H}=\hat{H}_{v}+\hat{H}_{\pi}+\hat{V}_{v \pi}
$$

The relative shears-band energies depend only on the neutron-proton interaction:

$$
\begin{aligned}
& \frac{\left\langle N P^{-1} ; J\right| \hat{V}_{v \pi}\left|N P^{-1} ; J\right\rangle}{\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right)} \\
& \quad=-4 \sum_{R}(2 R+1) V_{j_{\nu} j_{\pi}, j_{\nu} j_{\pi}}^{R}\left\{\begin{array}{cccc}
j_{v} & j_{\pi} & J_{\pi} & J_{v} \\
R & j_{\pi} & J & j_{v} \\
j_{v} & j_{\pi} & J_{\pi} & J_{v}
\end{array}\right\}
\end{aligned}
$$

Dipole workehap. Gatn12. October 2013

The non-shears matrix element

The corresponding matrix element for a particleparticle or hole-hole configuration:

$$
\begin{aligned}
& \frac{\langle N P ; J| \hat{V}_{v \pi}|N P ; J\rangle}{\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right)}=\frac{\left\langle N^{-1} P^{-1} ; J\right| \hat{V}_{v \pi}\left|N^{-1} P^{-1} ; J\right\rangle}{\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right)} \\
& \quad=4 \sum_{R}(2 R+1) V_{j_{v} j_{\pi}, j_{v} j_{\pi}}^{R}\left[\begin{array}{cccc}
j_{v} & j_{\pi} & J_{\pi} & J_{v} \\
R & j_{\pi} & J & j_{v} \\
j_{v} & j_{\pi} & J_{\pi} & J_{v}
\end{array}\right]
\end{aligned}
$$

Dipole morkhhok. GAN12. October 2013

The classical limit

Study the shears matrix element in the classical limit, i.e. for large angular momenta.
Semi-classical expressions are known for Wigner (3j) and Racah (6j) coefficients but not for $3 n j$ coefficients with $n>2$.
A field of active mathematical research with connections to graph theory, quantum gravity, spin networks...

3nj coefficients as graphs

Dipole morkshok. GANOL. October 2013

Two kinds of $12 j$ symbols

Dipole morkshok. GANOL. October 2013

$3 j$ as the limit of $6 j$

The asymptotic formula:

$$
\begin{aligned}
& \left\{\begin{array}{ccc}
a & b & c \\
d+R & e+R & f+R
\end{array}\right\} \\
& \xrightarrow{R \rightarrow \infty} \xrightarrow{(-)^{a+b+c+2(d+e+f)}} \\
& \times\left(\begin{array}{ccc}
a & b & c \\
e-f & f-d & d-e
\end{array}\right)
\end{aligned}
$$

Dipole morkhhok. GAN12. October 2013

(Semi-)classical approximations

(a)

(c)
K. Schulten \& R.G. Gordon, J. Math. Phys. 16 (1975) 1961 \& 1971

Dipale warkshap, Grthlis, Octaber 2013

Matrix elements of MSDI

Modified surface delta interaction:

$$
\hat{V}^{\mathrm{MSDI}}(i, j)=-4 \pi a_{T}^{\prime} \delta\left(\bar{r}_{i}-\bar{r}_{j}\right) \delta\left(r_{i}-R_{0}\right)+b^{\prime} \bar{\tau}_{i} \cdot \bar{\tau}_{j}+c^{\prime}
$$

Its matrix elements are
$-\frac{\left(2 j_{v}+1\right)\left(2 j_{\pi}+1\right)}{2}\left[a_{01}\left(\begin{array}{ccc}j_{v} & j_{\pi} & R \\ 1 / 2 & -1 / 2 & 0\end{array}\right)^{2}+a_{0}\left(\begin{array}{ccc}j_{v} & j_{\pi} & R \\ 1 / 2 & 1 / 2 & -1\end{array}\right)^{2}\right]-b+c$
with

$$
\begin{aligned}
& a_{01}=\frac{a_{0}+a_{1}}{2}-(-)^{\ell_{v}+\ell_{x}+R} \frac{a_{0}-a_{1}}{2} \\
& a_{T}=a_{T}^{\prime} C\left(R_{0}\right), \quad b=b^{\prime} C\left(R_{0}\right), \quad c=c^{\prime} C\left(R_{0}\right)
\end{aligned}
$$

Dipole warkshop, GFTHOL. Octaber 2013

A simple sum

An exact result:

$$
\sum_{R}(2 R+1)\left\{\begin{array}{cccc}
j_{v} & j_{\pi} & J_{\pi} & J_{v} \\
R & j_{\pi} & J & j_{v} \\
j_{v} & j_{\pi} & J_{\pi} & J_{v}
\end{array}\right\}=\frac{1}{\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right)}
$$

Dipole morkshok. GANU2. Octaber 2013

A more complicated sum (1)

An exact result:

$$
\begin{aligned}
& S_{n}=\sum_{R}(2 R+1)\left(\begin{array}{ccc}
j_{v} & j_{\pi} & R \\
1 / 2 & n-1 / 2 & -n
\end{array}\right)^{2}\left\{\begin{array}{cccc}
j_{v} & j_{\pi} & J_{\pi} & J_{v} \\
R & j_{\pi} & J & j_{v} \\
j_{v} & j_{\pi} & J_{\pi} & J_{v}
\end{array}\right] \\
& =\sum_{\substack{m_{v} M_{v} \\
m_{2} M_{\pi}}}\left(\begin{array}{lll}
j_{v} & j_{v} & J_{v} \\
1 / 2 & m_{v} & M_{v}
\end{array}\right)^{2}\left(\begin{array}{ccc}
j_{\pi} & j_{\pi} & J_{\pi}^{2} \\
-n+1 / 2 & m_{\pi} & M_{\pi}
\end{array}\right)^{2}\left(\begin{array}{ccc}
J_{v} & J_{\pi} & J \\
M_{v} & M_{\pi} & M
\end{array}\right)^{2}
\end{aligned}
$$

Dipole morkshok. Getn2L. October 2013

A more complicated sum (2)

An approximate result (Wigner):

$$
\left(\begin{array}{ccc}
J_{v} & J_{\pi} & J \\
M_{v} & M_{\pi} & M
\end{array}\right)^{2} \mapsto \frac{1}{4 \pi A}
$$

Therefore

$$
\begin{aligned}
S_{n} & \approx \frac{1}{4 \pi A} \sum\left(\begin{array}{ccc}
j_{v} & j_{v} & J_{v} \\
1 / 2 & m_{v} & M_{v}
\end{array}\right)^{2}\left(\begin{array}{ccc}
j_{\pi} & j_{\pi} & J_{\pi} \\
-n+1 / 2 & m_{\pi} & M_{\pi}
\end{array}\right)^{2} \\
& \approx \frac{1}{4 \pi\left(2 j_{v}+1\right)\left(2 j_{\pi}+1\right) A}
\end{aligned}
$$

A is the area of a triangle with sides of lengths $J_{v}+1 / 2, J_{\pi}+1 / 2$ and $J+1 / 2$.

Dipole workblop. Genn92. Octaber 2013

In terms of the shears angle

The shears angle is the angle between the angular momentum vectors of neutron particles and the proton holes:

$$
\theta_{v \pi}=\arccos \frac{J(J+1)-J_{v}\left(J_{v}+1\right)-J_{\pi}\left(J_{\pi}+1\right)}{2 \sqrt{J_{v}\left(J_{v}+1\right) J_{\pi}\left(J_{\pi}+1\right)}}
$$

We have

$$
S_{n} \approx \frac{2}{\pi\left(2 j_{v}+1\right)\left(2 j_{\pi}+1\right)\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right) \sin \theta_{v \pi}}
$$

Dipale warkshap. GitH1 L. Octaber 2013

Another sum

Another approximate result:

$$
\begin{aligned}
\bar{S}_{0} & =\sum_{R}(-)^{R}(2 R+1)\left(\begin{array}{ccc}
j_{v} & j_{\pi} & R \\
1 / 2 & -1 / 2 & 0
\end{array}\right)^{2}\left\{\begin{array}{cccc}
j_{v} & j_{\pi} & J_{\pi} & J_{v} \\
R & j_{\pi} & J & j_{v} \\
j_{v} & j_{\pi} & J_{\pi} & J_{v}
\end{array}\right\} \\
& \approx-(-)^{j_{v}+j_{\pi}} \frac{2}{\pi\left(2 j_{v}+1\right)\left(2 j_{\pi}+1\right)\left(2 J_{v}+1\right)\left(2 J_{\pi}+1\right) \tan \theta_{v \pi}}
\end{aligned}
$$

Dipole markshop, GOUNIL. Octaber 2013

Classical shears matrix element

We obtain for a MSDI the following classical approximation of the shears matrix element:

$$
\left\langle N P^{-1} ; J\right| \hat{V}_{v \tau}^{\text {vSD }}\left|N P^{-1} ; J\right\rangle \approx 4(b-c)+\frac{\alpha_{s}}{2 \pi \sin \theta_{v \pi}}+\frac{\alpha_{\mathrm{t}}}{2 \pi \tan \theta_{v \pi}}
$$

with

$$
\begin{aligned}
& \alpha_{\mathrm{s}}=4\left(3 a_{0}+a_{1}\right), \quad \alpha_{\mathrm{t}}=4\left(a_{0}-a_{1}\right) \varphi \\
& \varphi=\frac{1}{4}\left(\varphi_{v} \varphi_{\pi}+\varphi_{v} \varphi_{\pi}^{\prime}+\varphi_{v}^{\prime} \varphi_{\pi}+\varphi_{v}^{\prime} \varphi_{\pi}^{\prime}\right) \\
& \varphi_{\rho}=(-)^{l_{\rho}+j_{\rho}}, \quad \varphi_{\rho}^{\prime}=(-)^{\rho_{\rho}+j_{\rho}^{\prime}}
\end{aligned}
$$

Dipole morkshok. GANOL. October 2013

$j_{o}=19 / 2 \& j^{\prime}{ }_{e}=21 / 2 \& J_{e}=20$

Dipole morkhok, GANOL. October 2013

$j_{o}=21 / 2 \& j^{\prime}{ }_{e}=21 / 2 \& J_{e}=20$

Dipole morkshok, GATN1L. October 2013

$j_{Q}=11 / 2 \& j^{\prime}{ }_{\varrho}=13 / 2 \& J_{\varrho}=12$

Dipale markshap, GATUTL. Octaber 2013

$$
j_{Q}=21 / 2 \& j^{\prime}{ }_{\varrho}=21 / 2 \& J_{\varrho}=12
$$

Dipale warkshap. GATITL. Octaber 2013

1p-1h matrix element

Recall the well-known classical interpretation of a short-range nuclear matrix element.
For MSDI:

$$
\left\langle j_{v} j_{\pi}^{-1} ; J\right| \hat{V}_{v \pi}^{\text {MSDI }}\left|j_{v} j_{\pi}^{-1} ; J\right\rangle \approx(b-c)+\frac{\alpha_{\mathrm{s}}}{2 \pi \sin \theta_{v \pi}}+\frac{\alpha_{\mathrm{t}}}{2 \pi \tan \theta_{v \pi}}
$$

with

$$
\begin{aligned}
& \alpha_{\mathrm{s}}=\left(a_{0}+a_{1}\right)\left[1+(-)^{j_{v}+j_{x}+J}\right]+2 a_{0}+(-)^{\ell_{v}+\ell_{x}+J}\left(a_{0}-a_{1}\right) \\
& \alpha_{\mathrm{t}}=2(-)^{j_{v}+j_{x}+J} a_{0}+(-)^{\ell_{v}+\ell_{x}+j_{v}+j_{x}}\left(a_{0}-a_{1}\right)
\end{aligned}
$$

1p-1h matrix element

Dipole morkshok. Getn2L. October 2013

1p-1h matrix element

Dipole morkshok. GANT2L. October 2013

1p-1h matrix element

Dipole morkshok. GANT2L. October 2013

Conjecture

Assume near-aligned neutron particles and nearaligned proton holes:

$$
|N\rangle \equiv\left|j_{v} j_{v}^{\prime} j_{v}^{n} \ldots ; J_{v}\right\rangle \quad \&\left|P^{-1}\right\rangle \equiv\left|j_{\pi}^{-1} j_{\pi}^{\prime-1} j_{\pi}^{n-1} \ldots ; J_{\pi}\right\rangle
$$

A neutron-proton short-range force has an interaction energy in the coupled state which can be approximated as

$$
E(J) \equiv\left\langle N P^{-1} ; J\right| \hat{V}_{v \pi}\left|N P^{-1} ; J\right\rangle \approx \frac{\alpha_{\mathrm{s}}}{2 \pi \sin \theta_{v \pi}}+\frac{\alpha_{\mathrm{t}}}{2 \pi \tan \theta_{v \pi}}
$$

The coefficients α_{s} and α_{t} depend on the isoscalar and isovector interaction strengths.

Dipole workedap. Gatn91. October 2013

A simple application

Let's accept the expression for the shears energy

$$
E(J)=\frac{\alpha_{\mathrm{s}}}{2 \pi \sin \theta_{v \pi}}+\frac{\alpha_{\mathrm{t}}}{2 \pi \tan \theta_{v \pi}}
$$

The head of the shears band follows from

$$
\left.\frac{\partial E}{\partial \theta_{v \pi}}\right|_{\theta_{v \pi}=\theta_{v \pi}^{0}}=0 \Rightarrow \cos \theta_{v \pi}^{0}=-\frac{\alpha_{\mathrm{t}}}{\alpha_{\mathrm{s}}} \quad\left(=\frac{a_{0}-a_{1}}{3 a_{0}+a_{1}}\right)
$$

The excitation energies of the shears-band members are given as

$$
E_{\mathrm{x}}(J)=\frac{\alpha_{\mathrm{s}}}{2 \pi \sin \theta_{v \pi}}\left(1-\cos \theta_{v \pi}^{0} \cos \theta_{v \tau}\right)-\frac{\alpha_{\mathrm{s}} \sin \theta_{v \pi}^{0}}{2 \pi}
$$

Dipole workehop. Getn91. October 2013

A simple application: ${ }^{199} \mathrm{~Pb}$

M1 transitions

Exact result for $n p-n h$ configurations:

$$
\begin{aligned}
& B(\mathrm{M} 1 ; J \rightarrow J-1) \\
& =\frac{3}{4 \pi}\left(g_{J_{v}}-g_{J_{\pi}}\right)^{2} \frac{\left(C^{\prime}+1\right)\left(C^{\prime}-2 J_{v}\right)\left(C^{\prime}-2 J_{\pi}\right)\left(C^{\prime}-2 J+1\right)}{4 J(2 J+1)}
\end{aligned}
$$

with $C^{\prime}=J_{v}+J_{\pi}+J$.
Classical approximation:

$$
B(\mathrm{M} 1 ; J \rightarrow J-1) \approx \frac{3}{4 \pi}\left(g_{J_{v}}-g_{J_{\pi}}\right)^{2} \frac{\left(2 J_{v}+1\right)^{2}\left(2 J_{\pi}+1\right)^{2}}{16 J(2 J+1)} \sin ^{2} \theta_{v \pi}
$$

Dipole workblap, Gatn91. Octaber 2013

M1 transitions in ${ }^{199} \mathrm{~Pb}$

Proposed configuration of states in band 1:

$$
\left[v\left(1 i_{13 / 2}^{-3}\right)^{33 / 2} \times \pi\left(1 h_{9 / 2} 1 i_{13 / 2}\right)^{11}\right]^{(J)}
$$

Calculation of g factors:

$$
\begin{aligned}
& v\left(1 i_{13 / 2}^{-3}\right)^{33 / 2}: g_{J_{v}}=g_{1 i_{13 / 2}}^{v}=-0.29 \\
& \pi\left(1 h_{9 / 2} 1 i_{13 / 2}\right)^{(11)}: g_{J_{\pi}}=\frac{9}{22} g_{1 h_{9 / 2}}^{\pi}+\frac{13}{22} g_{1 i_{13 / 2}}^{\pi}=1.03
\end{aligned}
$$

Dipole morkshok. GANOL. October 2013

M1 transitions in ${ }^{199} \mathrm{~Pb}$

Dipole morkshok. GFAN2. October 2013

Conclusions and outlook

The geometry of the shears mechanism can be derived from the spherical shell model.

It establishes a connection with microscopic properties of the neutron-proton interaction and indicates the limits of application.
Outlook:
Proof of the np-nh conjecture.
Analysis of other interactions (tensor...).
Treatment of mixed configurations.

