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Introduction and goals



Goals

1) Tackle finite-nuclei superfluidity in an ab-initio fashion

2) Revisit many-body techniques using low-momentum interactions 

3) Study the effect of NNN forces

4) Connect with (non-empirical) energy density functionals 



Towards a unified description of nuclei

SR and MR energy density functionals

Shell model

“Exact” methods (GFMC, NCSM, ...) 

Ab-initio approaches (CC, SCGF, IM-SRG)



State-of-the-art ab-initio nuclear structure theory

✺ Methods for an ab-initio description of medium-mass nuclei as of 2010

(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]

(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]

(3) Self-consistent Dyson-Green’s function [Barbieri, Dickhoff]
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Low-momentum nuclear interactions

(1)  Unconstrained 

  (2)  Low-k       high-k couplings make
        N-body calculations unbearable

(3) Details of high-k physics irrelevant 
     to low-energy nuclear structure

{
low-k - high-k coupling

short-range

➟ Traditional “hard core” potentials



Low-momentum nuclear interactions

  (2)  Low-k       high-k couplings make
        N-body calculations unbearable

(3) Details of high-k physics irrelevant 
     to low-energy nuclear structure

➟ “Soft” NN and NNN interactions

 RG

(1)  Universal low-k physics unchanged 

(2)  Low-k       high-k decoupled

(3)  High-k physics screened out

(1)  Unconstrained {
low-k - high-k coupling

short-range

➟ Traditional “hard core” potentials



Low-momentum nuclear interactions

✺ Renormalization group transformations to decouple low and high momenta 

(a)

(b)

Figure 10: Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600MeV)
of Ref. [44] in the 3S1 channel: (a) Vlow k running in Λ, and (b) SRG running in λ (see Fig. 27 for plots
in k2, which show the diagonal width of order λ2).

This is the heart of what is done with low-momentum interaction approaches: arrange for the degrees
of freedom for nuclear structure to be the relevant ones. This does not mean that other degrees of
freedom cannot be used, but to again quote Weinberg [64]: “You can use any degrees of freedom you
want, but if you use the wrong ones, you’ll be sorry.”

There are two major classes of RG transformations used to construct low-momentum interactions,
which are illustrated schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering
a momentum cutoff Λ above which matrix elements go to zero. In the SRG approach, decoupling is
achieved by lowering a cutoff λ (in energy differences λ2) using flow equations, which means evolving
toward the diagonal in momentum space. The technology for carrying these out is outlined in Section 3,
but the effects can be readily seen in the series of contour plots in Figs. 10(a) and 10(b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction,
but shifts contributions between the interaction strengths and the sums over intermediate states in loop
integrals. The evolution of phenomenological or chiral EFT interactions to lower resolution is beneficial
because these shifts can weaken or largely eliminate sources of nonperturbative behavior, and because
lower cutoffs require smaller bases in many-body calculations, leading to improved convergence for
nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-order contributions,
to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
different orders of chiral EFT interactions, we have a powerful tool for extrapolations to the extremes
and for assessing the uncertainties of key matrix elements needed in fundamental symmetry tests.

The idea of effective interactions in a limited model space is an old and well-exploited one in nuclear
physics. However, we will emphasize the flexibility of the RG compared to effective interaction methods.
The continuous “cutoff” variation (in quotes because it may not be an explicit cutoff) is a valuable new
tool for nuclear physics (see Section 2.6). The RG methods are versatile and suggest new ways to make
progress (for example, using the in-medium SRG, discussed in Section 4.3). In addition, RG combined
with EFT is a natural framework for uncovering universal behavior.

We note that the RG is an integral part of any EFT. Matching of the EFT at a given truncation
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Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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[Bogner, Furnstahl,
 Schwenk 2009]

➟ NN scattering phase-shifts and deuteron binding energy conserved

 RG

➟ “Soft” NN and NNN interactions➟ Traditional “hard core” potentials
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Low-momentum nuclear interactions

✺ Universality
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Figure 17: Diagonal (left) and off-diagonal (right) momentum-space matrix elements for various phe-
nomenological NN potentials initially (upper figures) and after RG evolution to low-momentum inter-
actions Vlow k [5, 6] (lower figures) for a smooth regulator with Λ = 2.0 fm−1 and nexp = 4.
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Figure 18: Diagonal (left) and off-diagonal (right) momentum-space matrix elements of different N3LO
NN interactions (EM [20] and EGM [44]) initially (upper figures) and after RG evolution to low-
momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with Λ = 2.0 fm−1 and nexp = 4.
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[Bogner, Furnstahl, Schwenk 2009]✺ RG transformations induce many-body forces

✺ N-body observables are RG invariant if and only if

    1) Induced N-body (e.g. 3-body) forces are kept

    2) N-body calculation is exact

RG cutoff dependence helps tracking

    1) Importance of omitted N-body forces

    2) Incomplete N-body calculation



Low-momentum nuclear interactions

✺ Universality
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✺ Perturbativeness?
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Figure 19: (a) Particle-particle contributions to the energy per nucleon in symmetric nuclear matter
as a function of the Fermi momentum kF for the initial Argonne v18 potential and the RG-evolved
Vlow k with Λ = 2.1 fm−1 [9]. (b) Pair-distribution function g(r) in nuclear matter for kF = 1.35 fm−1 at
different resolutions, for details see Ref. [10].

behavior are resolution-dependent,7 because they depend on the degree of coupling between low- and
high-momentum states [6, 7, 9, 12]. Consequently, RG methods can be used to improve perturbative
convergence and reduce the short-range strength of the associated correlations in the wave functions,
as shown for symmetric nuclear matter in Figs. 19(a) and 19(b), respectively.

We can quantify the perturbativeness of the potential as we evolve to lower Λ for Vlow k (or λ for
SRG) interactions by using the eigenvalue analysis introduced long ago by Weinberg [75] and applied
to Vlow k and SRG potentials in Refs. [6,7,9,12]. Consider the Born series for the T matrix at energy E
with Hamiltonian H = H0 + V ,

T (E) = V + V
1

E −H0
V + . . . . (4)

By finding the eigenvalues and eigenvectors of the operator (E −H0)−1V ,

1

E −H0
V |Γν〉 = ην(E)|Γν〉 , (5)

and then acting with T (E) on the eigenvectors,

T (E)|Γν〉 =
(
1 + ην(E) + η2ν(E) + . . .

)
V |Γν〉 , (6)

it follows that nonperturbative behavior at energy E is signaled by one or more eigenvalues with
|ην(E)| ! 1 [75]. A rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ην(E) as
an energy-dependent coupling that must divide V to produce a solution to the Schrödinger equation at
energy E. For negative energies, a purely attractive V gives positive real ην(E) values, while a purely
repulsive V gives negative eigenvalues. For this reason, we refer to negative eigenvalues as repulsive
and positive ones as attractive, although the eigenvalues become complex for positive E.

7This is in contrast to non-perturbative features like low-energy bound or nearly bound states in the S-waves and the
pairing instability at finite density that are insensitive to the short-distance details.
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Figure 40: Nuclear matter energy per particle as a function of Fermi momentum kF at the Hartree-Fock
level (left) and including second-order (middle) and particle-particle-ladder contributions (right), based
on evolved N3LO NN potentials and 3N forces fit to E3H and r4He [16]. Theoretical uncertainties are
estimated by the NN (lines) and 3N (band) cutoff variations.

The key nuclear matter results are summarized in Fig. 40, which shows the energy per particle of
symmetric nuclear matter as a function of Fermi momentum kF, or the density ρ = 2k3

F/(3π
2). A

grey square representing the empirical saturation point reflects the ranges of nuclear matter saturation
properties predicted by phenomenological Skyrme energy functionals that most accurately reproduce
properties of finite nuclei. Nuclear matter is calculated in three approximations: Hartree-Fock (left)
and including approximate second-order (middle) and summing particle-particle-ladder contributions
(right). These are the first results for nuclear matter based on chiral NN and 3N interactions. The
technical details are given in Refs. [9, 16] and work is in progress to improve the 3N treatment.

The calculations of Fig. 40 start from the N3LO NN potential (Λ = 500MeV) of Ref. [20]. This
NN potential is RG-evolved to smooth-cutoff low-momentum interactions Vlow k using the techniques
of Section 3.2. Based on the universality of Vlow k discussed in Section 2.3, we do not expect large
differences starting from different N3LO potentials. The N2LO 3N forces of Section 4.1 are taken as
a truncated basis for low-momentum 3N interactions,15 where the cD and cE couplings have been fit
for various cutoffs to the 3H binding energy and the 4He matter radius [16]. (In the future, it will be
possible to include consistently evolved three-body forces starting from chiral EFT using the recent
advances in extending the SRG methods beyond the NN level [85, 137, 138].) The 3N force fits to the
4He radius improve the cutoff independence significantly compared to fitting to A = 3, 4 energies only
(see Fig. 6 in Ref. [9]). The calculations of Fig. 40 use the same 3N regulator of Ref. [127,128], but with
a 3N cutoff Λ3NF that is allowed to vary independently of the NN cutoff. The shaded regions in Fig. 40
show the range of results for 2.0 fm−1 < Λ3NF < 2.5 fm−1 at fixed Λ = 2.0 fm−1. These predictions are
particularly sensitive to uncertainties in the ci coefficients (also for neutron matter, see Section 5.2),
which raises the possibility of using nuclear matter to constrain some of the ci couplings.

The Hartree-Fock results show that nuclear matter is bound even at this simplest level. A calculation
without approximations should be independent of the cutoffs, so the spread in Fig. 40 sets the scale
for omitted many-body contributions. The second-order results show a dramatic narrowing of this
spread, with predicted saturation consistent with the empirical range. The narrowing happens across
the full density range. This is strong evidence that these encouraging results are not fortuitous, but that
cutoff independence has been reached at the level of 1–2MeV per particle. The controlled theoretical

15This assumes that the ci coefficients of the long-range 2π-exchange part of 3N forces are not modified by the RG
evolution.
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Three-body forces

✺ Realistic microscopic calculations cannot avoid the use of NNN forces

    ° Binding energies, saturation properties and radii

    ° Shell evolution

    ° Spin-orbit splitting

    ° Three-nucleon scattering
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

[Otsuka et al. 2010]

➟ Dripline location in O isotopes (24O) possibly due to NNN physics



Three-body forces

✺ Currently: microscopic NNN interactions only in light systems and INM

    ° Normal-ordered (average) part of NNN possibly sufficient

➟ Coupled-cluster in 4He [Hagen et al. 2007]

➟ SCGF in INM [Somà, Bożek 2008]

➟ Perturbation theory in INM [Hebeler, Schwenk 2009]

COUPLED-CLUSTER THEORY FOR THREE-BODY . . . PHYSICAL REVIEW C 76, 034302 (2007)
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FIG. 6. (Color online) (Data points) CCSD results (taken at the
h̄ω minima) for the binding energy of 4He with 3NFs as a function of
the number of oscillator shells. (Dashed lines) Exponential fit to the
data and asymptote of the fit. (Full line) Exact result.

due to the sharp cutoff in Vlow k . This might be improved by
using low-momentum interactions with smooth cutoffs [58].
Using the minima of the CCSD results with 3NFs, we make
an exponential fit of the form E(N ) = E∞ + a exp (−bN ) to
the data points. The result is shown in Fig. 6. The extrapolated
infinite model space value is E∞ = −28.09 MeV, which is
very close to the exact result E = −28.20(5) MeV.

It is interesting to analyze the different contributions "E
to the binding energy E. The individual contributions are
given in Fig. 7 for a model space of N = 4 oscillator shells
and h̄ω = 20 MeV. The main contribution stems from the
low-momentum NN interaction. The contributions from 3NFs
account only for about 10% of the total binding energy. This
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FIG. 7. (Color online) Relative contributions |"E/E| to the
binding energy of 4He at the CCSD level. The different points denote
the contributions from (1) low-momentum NN interactions, (2) the
vacuum expectation value of the 3NF, (3) the normal-ordered one-
body Hamiltonian due to the 3NF, (4) the normal-ordered two-body
Hamiltonian due to the 3NF, and (5) the residual 3NFs. The dotted
line estimates the corrections due to omitted three-particle/three-hole
clusters.

is consistent with the chiral EFT power-counting estimate
〈V3N〉 ∼ (Q/#χ )3〈Vlow k〉 ≈ 0.1〈Vlow k〉 [50] (see also Table I
in Ref. [52]). The second, third, and fourth largest contribution
are due to the first, second, and third term on the right-hand
side of Eq. (2). These are the density-dependent zero-, one-,
and two-body terms, which resulted from the normal ordering
of the three-body Hamiltonian in coupled-cluster theory.
The contributions from the residual three-body Hamiltonian,
Eq. (3), are very small and are represented by the last point
in Fig. 7. Recall that the residual 3NF contributes to the
energy directly through Eq. (12) and indirectly through a
modification of the cluster amplitudes via Eqs. (15) and (16).
Apparently, both contributions are very small. In addition and
independent of the result that low-momentum 3N interactions
are perturbative for cutoffs # <∼ 2 fm−1 [50], we find here that
the contributions of 3NFs decrease rapidly with increasing
rank of the normal-ordered terms.

The small contribution from the residual three-body Hamil-
tonian is the most important result of our study. It suggests that
one can neglect the residual terms of the 3NF when computing
binding energies of light nuclei. This is not unexpected
and has been anticipated in several earlier studies. Mihaila
and Heisenberg [19] computed the charge form factor for
16O within coupled-cluster theory and found a very good
agreement with experimental data by considering only the
density-dependent one- and two-body parts of 3NFs. Similarly,
Navrátil and Ormand [59] observed in no-core shell-model
calculations that density-dependent two-body terms are the
most significant contributions of effective three-body forces.
Our finding also support Zuker’s [60] idea that monopole
corrections to valence-shell interactions are due to the density-
dependent terms of 3NFs. Note finally that the modeling of
three-body interactions in terms of density-dependent two-
body Hamiltonians has a long history, see, e.g., Ref. [61].
Note that all these examples and the present study employ
sufficiently “soft” or “effective” interactions. We expect
that the smallness of residual 3NFs is a property of such
interactions. We will study the cutoff dependence of this
finding in future work. Finally, the smallness of residual
3NFs is also encouraging for future improved nuclear matter
calculations, which currently include low-momentum 3NFs
through density-dependent NN interactions [51].

The smallness of the residual three-body terms is also for
coupled-cluster calculations a most welcome result. This is
attractive for two reasons. First, the inclusion of the residual
three-nucleon Hamiltonian, as described in subsection II B,
is computationally expensive. It exceeds the cost of a CCSD
calculation for two-body Hamiltonians by a factor of order
O(nu) + O(n2

o) and is therefore significant for a large number
of unoccupied orbitals and/or large number of nucleons.
Second, the omission of the residual three-body Hamiltonian
will allow us to treat 3NFs within the standard coupled-cluster
theory developed for two-body Hamiltonians (after normal
ordering). As a result, we can take the CCSD calculations
one step further and include perturbative corrections of three-
particle/three-hole clusters [62].

Let us neglect the residual 3NF terms of Eq. (3) and
perform CCSD(T) calculations for the binding energy of 4He.
The approximate inclusion of three-particle/three-hole clusters

034302-9

✺ Realistic microscopic calculations cannot avoid the use of NNN forces

    ° Binding energies, saturation properties and radii

    ° Shell evolution

    ° Spin-orbit splitting

    ° Three-nucleon scattering



Connection to non-empirical EDF

✺ Standard EDF parameterizations (e.g. Skyrme, Gogny, relativistic)

    ° Successful in major shell where adjusted

    ° Lack predictive power in new regions of interest

Efforts to extend and connect with more fundamental approaches

✺ Non-empirical EDF from low-momentum interactions

  ° Pairing channel [Duguet et al.]

  ° Particle-hole channel [Gebremariam et al.]

Benchmarks needed from many-body methods that share the same features
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Elements of Green’s function methods



Dyson Green’s functions

✺ Many-body Hamiltonian

✺ One-body propagator or Green’s function

✺ Heisenberg representation for creation/annihilation operators

✺ Fourier transform to energy domain

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

iG(N,N)
ab (t, t′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (12a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (12b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab = G(0)
ab +

∑

cd

G (0)
ac Σcd Gdb (13)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
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Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
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that
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C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab = G(0)
ab +

∑

cd

G (0)
ac Σcd Gdb (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab(ω)Gab(ω) (13)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (14)

〈Ĥ〉 = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (15)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (16a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (16b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

ΣR(ω) (17)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (18)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)

✺ Hierarchy of coupled equations between 1-body, 2-body, ... N-body propagators



Observables (1)

1) Separation energy spectrum

2) Spectroscopic factors

where
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By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation

G11
ab(ω) =

∑

N

|cN |2
∑

k

〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

|cN |2
∑

k

〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉

ω + [EN−1
k − EN

0 + µ]− iη

Gab(ω) =
∑

k

X k (N)
a

∗
X k (N)

b

ω − E+ (N)
k + iη

+
∑

k

Yk (N)
a Yk (N)

b

∗

ω − E− (N)
k − iη

(39)

where the spectroscopic amplitudes in the N -particle system are defined as

X k (N)
a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (40a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (40b)

and the separation energies are

E+(N)
k ≡ EN+1

k − EN
0 , (41a)

E− (N)
k ≡ EN

0 − EN−1
k . (41b)

From the amplitudes (40) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (42a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (42b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.
In a similar way it is possible to derive the spectral form of the other normal Green’s function

G22
ab(ω) =

∑

N

|cN |2
∑

k

Yk (N)
ā

∗
Yk (N)
b̄

ω + E− (N)
k + iη

+
∑

N

|cN |2
∑

k

X k (N)
ā X k (N)

b̄

∗

ω + E+(N)
k − iη

. (43)

These results show that it is possible to obtain, without further assumptions, an exact Lehmann representation for
the normal Gorkov propagators. Poles are present for all values of N and correspond to energy differencies between
the N -particle ground-state and the (N ± 1)-particle eigenstates. Although contributions are present for all values of
N , the strengths of such poles are weighted by the coefficients cN , resulting in a distribution which is prominently
peaked around the average particle number demanded through Eq. (16).
Let us now apply the same procedure to anomalous propagators, taking G21 as an example. One first expands the

reference states and use the Schrödinger representation (21) to obtain

G21
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗N+2cN 〈ψN+2
0 |T

{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN 〈ψN+2
0 |ā†a(t)a

†
b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

c∗N+2cN 〈ψN+2
0 |a†b(t

′)ā†a(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]te−i(EN

0 −µN)t′ 〈ψN+2
0 |ā†a e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]t′e−i(EN

0 −µN)t 〈ψN+2
0 |a†b e

iΩ(t−t′) ā†a|ψN
0 〉 . (44)

At this point, unlike in the case of the normal propagator, the additional assumption (18) has to employed in order
to group the argument of the exponentials and have them multiplied by (t − t′) before inserting, as previously, a
complete set of eigenstates of Ω. In this case only the states with N + 1 particles will survive in both terms

G21
ab(t, t

′) ≈ −iθ(t− t′)
∑

N

c∗N+2cN
∑

k

e−i[EN+1
k −EN

0 −µ](t−t′) 〈ψN+2
0 |ā†a|ψN+1

k 〉〈ψN+1
k |a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN
∑

k

ei[E
N+1
k −EN

0 −µ](t−t′) 〈ψN+2
0 |a†b|ψ

N+1
k 〉〈ψN+1

k |ā†a|ψN
0 〉 . (45)
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By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation
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k |aa|ψN
0 〉
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b
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where the spectroscopic amplitudes in the N -particle system are defined as
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a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (40a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (40b)

and the separation energies are

E+(N)
k ≡ EN+1

k − EN
0 , (41a)

E− (N)
k ≡ EN

0 − EN−1
k . (41b)

From the amplitudes (40) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (42a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (42b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.
In a similar way it is possible to derive the spectral form of the other normal Green’s function

G22
ab(ω) =

∑

N

|cN |2
∑

k

Yk (N)
ā

∗
Yk (N)
b̄

ω + E− (N)
k + iη

+
∑

N

|cN |2
∑

k

X k (N)
ā X k (N)

b̄

∗

ω + E+(N)
k − iη

. (43)

These results show that it is possible to obtain, without further assumptions, an exact Lehmann representation for
the normal Gorkov propagators. Poles are present for all values of N and correspond to energy differencies between
the N -particle ground-state and the (N ± 1)-particle eigenstates. Although contributions are present for all values of
N , the strengths of such poles are weighted by the coefficients cN , resulting in a distribution which is prominently
peaked around the average particle number demanded through Eq. (16).
Let us now apply the same procedure to anomalous propagators, taking G21 as an example. One first expands the

reference states and use the Schrödinger representation (21) to obtain

G21
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗N+2cN 〈ψN+2
0 |T

{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN 〈ψN+2
0 |ā†a(t)a

†
b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

c∗N+2cN 〈ψN+2
0 |a†b(t

′)ā†a(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]te−i(EN

0 −µN)t′ 〈ψN+2
0 |ā†a e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]t′e−i(EN

0 −µN)t 〈ψN+2
0 |a†b e

iΩ(t−t′) ā†a|ψN
0 〉 . (44)

At this point, unlike in the case of the normal propagator, the additional assumption (18) has to employed in order
to group the argument of the exponentials and have them multiplied by (t − t′) before inserting, as previously, a
complete set of eigenstates of Ω. In this case only the states with N + 1 particles will survive in both terms

G21
ab(t, t

′) ≈ −iθ(t− t′)
∑

N

c∗N+2cN
∑

k

e−i[EN+1
k −EN

0 −µ](t−t′) 〈ψN+2
0 |ā†a|ψN+1

k 〉〈ψN+1
k |a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN
∑

k

ei[E
N+1
k −EN

0 −µ](t−t′) 〈ψN+2
0 |a†b|ψ

N+1
k 〉〈ψN+1

k |ā†a|ψN
0 〉 . (45)

{

Lehmann representation

7

and one obtains

G11
ab(t, t

′) = −iθ(t− t′)
∑

N

|cN |2
∑

k

e−i[EN+1
k

−EN
0 −µ](t−t′) 〈ψN

0 |aa|ψN+1
k 〉〈ψN+1

k |a†b|ψ
N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2
∑

k

ei[E
N−1
k −EN

0 +µ](t−t′) 〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉 . (39)

By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation

G11
ab(ω) =

∑

N

|cN |2
∑

k

〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

|cN |2
∑

k

〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉

ω + [EN−1
k − EN

0 + µ]− iη

Gab(ω) =
∑

k

X k (N)
a

∗
X k (N)

b

ω − E+ (N)
k + iη

+
∑

k

Yk (N)
a Yk (N)

b

∗

ω − E− (N)
k − iη

(40)

where the spectroscopic amplitudes in the N -particle system are defined as

X k (N)
a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (41a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (41b)

and the separation energies are

E+(N)
k ≡ EN+1

k − EN
0 , (42a)

E− (N)
k ≡ EN

0 − EN−1
k . (42b)

From the amplitudes (41) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (43a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (43b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.
In a similar way it is possible to derive the spectral form of the other normal Green’s function

G22
ab(ω) =

∑

N

|cN |2
∑

k

Yk (N)
ā

∗
Yk (N)
b̄

ω + E− (N)
k + iη

+
∑

N

|cN |2
∑

k

X k (N)
ā X k (N)

b̄

∗

ω + E+(N)
k − iη

. (44)

These results show that it is possible to obtain, without further assumptions, an exact Lehmann representation for
the normal Gorkov propagators. Poles are present for all values of N and correspond to energy differencies between
the N -particle ground-state and the (N ± 1)-particle eigenstates. Although contributions are present for all values of
N , the strengths of such poles are weighted by the coefficients cN , resulting in a distribution which is prominently
peaked around the average particle number demanded through Eq. (17).
Let us now apply the same procedure to anomalous propagators, taking G21 as an example. One first expands the

reference states and use the Schrödinger representation (22) to obtain

G21
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗N+2cN 〈ψN+2
0 |T

{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN 〈ψN+2
0 |ā†a(t)a

†
b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

c∗N+2cN 〈ψN+2
0 |a†b(t

′)ā†a(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]te−i(EN

0 −µN)t′ 〈ψN+2
0 |ā†a e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]t′e−i(EN

0 −µN)t 〈ψN+2
0 |a†b e

iΩ(t−t′) ā†a|ψN
0 〉 . (45)

{
Separation energies

and

7

and one obtains

G11
ab(t, t

′) = −iθ(t− t′)
∑

N

|cN |2
∑

k

e−i[EN+1
k

−EN
0 −µ](t−t′) 〈ψN

0 |aa|ψN+1
k 〉〈ψN+1

k |a†b|ψ
N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2
∑

k

ei[E
N−1
k −EN

0 +µ](t−t′) 〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉 . (43)

By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation

G11
ab(ω) =

∑

N

|cN |2
∑

k

〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

|cN |2
∑

k

〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉

ω + [EN−1
k − EN

0 + µ]− iη

Gab(ω) =
∑

k

X k (N)
a

∗
X k (N)

b

ω − E+ (N)
k + iη

+
∑

k

Yk (N)
a Yk (N)

b

∗

ω − E− (N)
k − iη

(44)

where the spectroscopic amplitudes in the N -particle system are defined as

X k (N)
a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (45a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (45b)

and the separation energies are

E+ (N)
k ≡EN+1

k − EN
0 (46a)

E− (N)
k ≡EN

0 − EN−1
k (46b)

From the amplitudes (45) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (47a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (47b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.
In a similar way it is possible to derive the spectral form of the other normal Green’s function

G22
ab(ω) =

∑

N

|cN |2
∑

k

Yk (N)
ā

∗
Yk (N)
b̄

ω + E− (N)
k + iη

+
∑

N

|cN |2
∑

k

X k (N)
ā X k (N)

b̄

∗

ω + E+(N)
k − iη

. (48)

These results show that it is possible to obtain, without further assumptions, an exact Lehmann representation for
the normal Gorkov propagators. Poles are present for all values of N and correspond to energy differencies between
the N -particle ground-state and the (N ± 1)-particle eigenstates. Although contributions are present for all values of
N , the strengths of such poles are weighted by the coefficients cN , resulting in a distribution which is prominently
peaked around the average particle number demanded through Eq. (21).
Let us now apply the same procedure to anomalous propagators, taking G21 as an example. One first expands the

reference states and use the Schrödinger representation (26) to obtain

G21
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗N+2cN 〈ψN+2
0 |T

{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN 〈ψN+2
0 |ā†a(t)a

†
b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

c∗N+2cN 〈ψN+2
0 |a†b(t

′)ā†a(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]te−i(EN

0 −µN)t′ 〈ψN+2
0 |ā†a e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]t′e−i(EN

0 −µN)t 〈ψN+2
0 |a†b e

iΩ(t−t′) ā†a|ψN
0 〉 . (49)
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Observables (2)

4) Koltun sum rule

3) One-body observables with

➟  e.g. kinetic energy 3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab(ω)Gab(ω) (13)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (14)

〈Ĥ〉 = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (15)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (16a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (16b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

ΣR(ω) (17)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (18)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab(ω)Gab(ω) (13)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (14)

〈Ĥ〉 = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (15)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (16a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (16b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

ΣR(ω) (17)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (18)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

➟ two-body observable computed from the one-body propagator

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads
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is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)
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etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
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†
b(t

′)
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|ΨN
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Gab(ω) =
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d (t− t′) eiω(t−t′) Gab(t, t
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∑
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∑
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〈Ĥ〉 = E0 =
∑
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[tab + ω δab] Gab(ω) (15)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
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representation
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The knowledge of G enables us to compute expecta-
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ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
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turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.
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〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1







j3 j2 j1
j6 j5 j4
j8 j7 j9






, (A8)







j3 j2 j1
j6 j5 j4
j8 j7 0






=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0〉C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0〉C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0〉C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0〉C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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




, (A8)







j3 j2 j1
j6 j5 j4
j8 j7 0






=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0〉C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0〉C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0〉C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0〉C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1







j3 j2 j1
j6 j5 j4
j8 j7 j9






, (A8)
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




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}
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volving the interacting Hamiltonian ΩI
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†
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′)
]

|Ψ0〉C , (B1a)

G12
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m
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m!
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m

(−i)m

m!

∫

dt1...
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ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
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G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0〉C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams

33

propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting

32

is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).
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d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
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āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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that
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ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
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〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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Ô =
∑

ab

Oab a
†
a ab (14)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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Ô =
∑

ab

Oab a
†
a ab (14)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
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that
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ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
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〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

〈Ĥ〉 = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

✺ Dyson equation
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.



Solving Dyson equation

✺ Different approximations to the self-energy (self-consistent approaches)

➟ Hartree-Fock ➟ Second order

➟ RPA ➟ Ladder (or T-matrix)

(Nearly) degenerate systems: breakdown of truncated expansions

e.g. pairing correlations: approximation schemes face Cooper instability
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Multiplying both sides of Eq. (83) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (84)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (85)

where only the proper self-energy appears because of the energy independence of the auxiliary potential. Similarly
one can derive a condition for the Gorkov amplitude X as

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k†
a

∂Σab(ω)

∂ω

∣
∣
∣
∣
ωk

X
k
b . (86)

C. First-order self-energies

In Fig. 1 the diagrams contributing to normal and anomalous first-order (irreducible) self-energies are displayed. For
the identification of the terms entering the irreducible self-energy the reader can refer to App. B. The diagrammatic
rules for Gorkov’s propagators and the evaluation of all self-energy diagrams are discussed in App. C while the
Φ-derivability of such self-energy terms is addressed in App. D. Let us consider the four first-order self-energies
diagrams. They are computed in Eqs. (C18), (C20), (C23) and (C24), and can be written as

Σ11 (1)
ab =

∑

cd,k

V̄acbd Vk∗
d Vk

c ≡ Λab = −Σ22 (1)
ab , (87a)

=
∑

cd,k

V̄bdac

(

Vk∗
c Vk

d

)∗
=

[

Σ11 (1)
ba

]∗

= Λ†
ab

Σ22 (1)
ab = −

∑

cd,k

V̄acbd Vk∗
d Vk

c = −
∑

cd

V̄acbd ρdc = −Λab , (87b)

Σ12 (1)
ab =

1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d ≡ h̃ab =
[

Σ21 (1)
ba

]∗

, (87c)

Σ21 (1)
ab =

1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d =
1

2

∑

cd

V̄ābc̄d ρ̃
∗
dc =

[

Σ12 (1)
ba

]∗

= h̃†
ab , (87d)

where the normal density matrix ρab has been defined in Eq. (74) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (88)

is the anomalous density matrix.

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.
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D. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the
propagators when they are computed at first order only, Eqs. (71) and (87) read

∑

b

(

tab − µab + Λab h̃ab

h̃†
ab −tab + µab − Λab

)(

Uk
b

V k
b

)

= ωk

(

Uk
a

V k
a

)

, (89)

which represents the HFB eigenvalue problem, usually written as

Ek

(

Uk

V k

)

=

(

h− µ h̃
h̃† −(h− µ)†

)(

Uk

V k

)

≡ ΩHFB

(

Uk

V k

)

, (90)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case
U and V are the components of the unitary Bogoliubov
quasiparticle transformation







aa =
∑

k Ū
k
a βk + V k∗

a β†
k

a†a =
∑

k Ū
k∗
a β†

k + V k
a βk .

(91)

Moreover, the normalization condition (85) reduces in
this case to the well-known identity

∑

a

∣
∣Y

k
a

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
+
∑

a

∣
∣V k

a

∣
∣
2
= 1 , (92)

which proves that when the self-energy is computed
at first order only, one recovers the Hartree-Fock-
Bogoliubov scheme. Let us recall that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular by the fragmen-
tation of the quasi-particle strength) such that they do
not correspond anymore to standard Hartree-Fock and
Bogoliubov potentials.

E. Second-order self-energies

Let us now discuss the second-order contributions to
both the normal and anomalous self-energies. In Figs.

FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order

FIG. 3. Second-order anomalous self-energies Σ21 (2′) (left)

and Σ21 (2′′) (right).

diagrams is discussed in App. C. Before addressing their
expressions, let us introduce the quantities

Mk1k2k3
a ≡

∑

ijk

V̄akij Ūk1
i Ūk2

j Vk3
k , (93a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Ūk1
i V̄k2

j Uk3
k , (93b)

Rk1k2k3
a ≡

∑

ijk

V̄ak̄īj V̄k1
i Ūk2

j Uk3
k , (93c)

and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ūk3
k , (94a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i Uk2

j V̄k3
k , (94b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj Uk1
i Vk2

j V̄k3
k , (94c)

in terms of which the second-order self-energies are go-
ing to be expressed. Given that P and R can be ob-
tained from M through cyclic permutations of indices
{k1, k2, k2} and taking into account the symmetries of
the potential matrix elements, one sees that such quan-
tities display the properties
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1







j3 j2 j1
j6 j5 j4
j8 j7 j9






, (A8)







j3 j2 j1
j6 j5 j4
j8 j7 0






=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0〉C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0〉C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0〉C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0〉C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Multiplying both sides of Eq. (83) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (84)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (85)

where only the proper self-energy appears because of the energy independence of the auxiliary potential. Similarly
one can derive a condition for the Gorkov amplitude X as

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k†
a

∂Σab(ω)

∂ω

∣
∣
∣
∣
ωk

X
k
b . (86)

C. First-order self-energies

In Fig. 1 the diagrams contributing to normal and anomalous first-order (irreducible) self-energies are displayed. For
the identification of the terms entering the irreducible self-energy the reader can refer to App. B. The diagrammatic
rules for Gorkov’s propagators and the evaluation of all self-energy diagrams are discussed in App. C while the
Φ-derivability of such self-energy terms is addressed in App. D. Let us consider the four first-order self-energies
diagrams. They are computed in Eqs. (C18), (C20), (C23) and (C24), and can be written as

Σ11 (1)
ab =

∑

cd,k

V̄acbd Vk∗
d Vk

c ≡ Λab = −Σ22 (1)
ab , (87a)

=
∑

cd,k

V̄bdac

(

Vk∗
c Vk

d

)∗
=

[

Σ11 (1)
ba

]∗

= Λ†
ab

Σ22 (1)
ab = −

∑

cd,k

V̄acbd Vk∗
d Vk

c = −
∑

cd

V̄acbd ρdc = −Λab , (87b)

Σ12 (1)
ab =

1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d ≡ h̃ab =
[

Σ21 (1)
ba

]∗

, (87c)

Σ21 (1)
ab =

1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d =
1

2

∑

cd

V̄ābc̄d ρ̃
∗
dc =

[

Σ12 (1)
ba

]∗

= h̃†
ab , (87d)

where the normal density matrix ρab has been defined in Eq. (74) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (88)

is the anomalous density matrix.

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.
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Multiplying both sides of Eq. (83) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (84)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (85)

where only the proper self-energy appears because of the energy independence of the auxiliary potential. Similarly
one can derive a condition for the Gorkov amplitude X as

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k†
a

∂Σab(ω)

∂ω

∣
∣
∣
∣
ωk

X
k
b . (86)

C. First-order self-energies

In Fig. 1 the diagrams contributing to normal and anomalous first-order (irreducible) self-energies are displayed. For
the identification of the terms entering the irreducible self-energy the reader can refer to App. B. The diagrammatic
rules for Gorkov’s propagators and the evaluation of all self-energy diagrams are discussed in App. C while the
Φ-derivability of such self-energy terms is addressed in App. D. Let us consider the four first-order self-energies
diagrams. They are computed in Eqs. (C18), (C20), (C23) and (C24), and can be written as

Σ11 (1)
ab =

∑

cd,k

V̄acbd Vk∗
d Vk

c ≡ Λab = −Σ22 (1)
ab , (87a)
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∑

cd,k

V̄bdac

(

Vk∗
c Vk

d

)∗
=

[

Σ11 (1)
ba

]∗

= Λ†
ab
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∑

cd,k
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d Vk

c = −
∑

cd
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1

2
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cd,k
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c Uk
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[

Σ21 (1)
ba

]∗
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Σ21 (1)
ab =

1

2

∑

cd,k
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c Vk
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1

2

∑

cd

V̄ābc̄d ρ̃
∗
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Σ12 (1)
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where the normal density matrix ρab has been defined in Eq. (74) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (88)

is the anomalous density matrix.

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.
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D. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the
propagators when they are computed at first order only, Eqs. (71) and (87) read

∑

b

(

tab − µab + Λab h̃ab

h̃†
ab −tab + µab − Λab

)(

Uk
b

V k
b

)

= ωk

(

Uk
a

V k
a

)

, (89)

which represents the HFB eigenvalue problem, usually written as

Ek

(

Uk

V k

)

=

(

h− µ h̃
h̃† −(h− µ)†

)(

Uk

V k

)

≡ ΩHFB

(

Uk

V k

)

, (90)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case
U and V are the components of the unitary Bogoliubov
quasiparticle transformation







aa =
∑

k Ū
k
a βk + V k∗

a β†
k

a†a =
∑

k Ū
k∗
a β†

k + V k
a βk .

(91)

Moreover, the normalization condition (85) reduces in
this case to the well-known identity

∑

a

∣
∣Y

k
a

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
+
∑

a

∣
∣V k

a

∣
∣
2
= 1 , (92)

which proves that when the self-energy is computed
at first order only, one recovers the Hartree-Fock-
Bogoliubov scheme. Let us recall that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular by the fragmen-
tation of the quasi-particle strength) such that they do
not correspond anymore to standard Hartree-Fock and
Bogoliubov potentials.

E. Second-order self-energies

Let us now discuss the second-order contributions to
both the normal and anomalous self-energies. In Figs.

FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order

FIG. 3. Second-order anomalous self-energies Σ21 (2′) (left)

and Σ21 (2′′) (right).

diagrams is discussed in App. C. Before addressing their
expressions, let us introduce the quantities

Mk1k2k3
a ≡

∑

ijk

V̄akij Ūk1
i Ūk2

j Vk3
k , (93a)
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a ≡

∑

ijk

V̄ak̄ij̄ Ūk1
i V̄k2

j Uk3
k , (93b)
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a ≡

∑

ijk

V̄ak̄īj V̄k1
i Ūk2

j Uk3
k , (93c)

and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ūk3
k , (94a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i Uk2

j V̄k3
k , (94b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj Uk1
i Vk2

j V̄k3
k , (94c)

in terms of which the second-order self-energies are go-
ing to be expressed. Given that P and R can be ob-
tained from M through cyclic permutations of indices
{k1, k2, k2} and taking into account the symmetries of
the potential matrix elements, one sees that such quan-
tities display the properties
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)
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m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1







j3 j2 j1
j6 j5 j4
j8 j7 j9






, (A8)







j3 j2 j1
j6 j5 j4
j8 j7 0






=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0〉C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!
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dt1...
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ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0〉C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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′)] |Ψ0〉C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm 〈Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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Multiplying both sides of Eq. (83) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (84)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (85)

where only the proper self-energy appears because of the energy independence of the auxiliary potential. Similarly
one can derive a condition for the Gorkov amplitude X as

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k†
a

∂Σab(ω)

∂ω

∣
∣
∣
∣
ωk

X
k
b . (86)

C. First-order self-energies

In Fig. 1 the diagrams contributing to normal and anomalous first-order (irreducible) self-energies are displayed. For
the identification of the terms entering the irreducible self-energy the reader can refer to App. B. The diagrammatic
rules for Gorkov’s propagators and the evaluation of all self-energy diagrams are discussed in App. C while the
Φ-derivability of such self-energy terms is addressed in App. D. Let us consider the four first-order self-energies
diagrams. They are computed in Eqs. (C18), (C20), (C23) and (C24), and can be written as

Σ11 (1)
ab =

∑

cd,k

V̄acbd Vk∗
d Vk

c ≡ Λab = −Σ22 (1)
ab , (87a)

=
∑

cd,k

V̄bdac

(

Vk∗
c Vk

d

)∗
=

[

Σ11 (1)
ba

]∗

= Λ†
ab

Σ22 (1)
ab = −

∑

cd,k

V̄acbd Vk∗
d Vk

c = −
∑

cd

V̄acbd ρdc = −Λab , (87b)

Σ12 (1)
ab =

1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d ≡ h̃ab =
[

Σ21 (1)
ba

]∗

, (87c)

Σ21 (1)
ab =

1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d =
1

2

∑

cd

V̄ābc̄d ρ̃
∗
dc =

[

Σ12 (1)
ba

]∗

= h̃†
ab , (87d)

where the normal density matrix ρab has been defined in Eq. (74) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (88)

is the anomalous density matrix.

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.
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D. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the
propagators when they are computed at first order only, Eqs. (71) and (87) read

∑

b

(

tab − µab + Λab h̃ab

h̃†
ab −tab + µab − Λab

)(

Uk
b

V k
b

)

= ωk

(

Uk
a

V k
a

)

, (89)

which represents the HFB eigenvalue problem, usually written as

Ek

(

Uk

V k

)

=

(

h− µ h̃
h̃† −(h− µ)†

)(

Uk

V k

)

≡ ΩHFB

(

Uk

V k

)

, (90)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case
U and V are the components of the unitary Bogoliubov
quasiparticle transformation







aa =
∑

k Ū
k
a βk + V k∗

a β†
k

a†a =
∑

k Ū
k∗
a β†

k + V k
a βk .

(91)

Moreover, the normalization condition (85) reduces in
this case to the well-known identity

∑

a

∣
∣Y

k
a

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
+
∑

a

∣
∣V k

a

∣
∣
2
= 1 , (92)

which proves that when the self-energy is computed
at first order only, one recovers the Hartree-Fock-
Bogoliubov scheme. Let us recall that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular by the fragmen-
tation of the quasi-particle strength) such that they do
not correspond anymore to standard Hartree-Fock and
Bogoliubov potentials.

E. Second-order self-energies

Let us now discuss the second-order contributions to
both the normal and anomalous self-energies. In Figs.

FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order

FIG. 3. Second-order anomalous self-energies Σ21 (2′) (left)

and Σ21 (2′′) (right).

diagrams is discussed in App. C. Before addressing their
expressions, let us introduce the quantities

Mk1k2k3
a ≡

∑

ijk

V̄akij Ūk1
i Ūk2

j Vk3
k , (93a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Ūk1
i V̄k2

j Uk3
k , (93b)

Rk1k2k3
a ≡

∑

ijk

V̄ak̄īj V̄k1
i Ūk2

j Uk3
k , (93c)

and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ūk3
k , (94a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i Uk2

j V̄k3
k , (94b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj Uk1
i Vk2

j V̄k3
k , (94c)

in terms of which the second-order self-energies are go-
ing to be expressed. Given that P and R can be ob-
tained from M through cyclic permutations of indices
{k1, k2, k2} and taking into account the symmetries of
the potential matrix elements, one sees that such quan-
tities display the properties
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
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√
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√
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One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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antisymmetrization of the NNN potential can be carried
out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f〉

= 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉
− 〈1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f〉
− 〈1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d〉
− 〈1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e〉
+ 〈1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d〉
+ 〈1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e〉 . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb 〈1:ā|Tkin|1:b̄〉 , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉

− ηa ηc 〈1:ā; 2:b|V NN |1:d; 2:c̄〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉

− ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:d̄; 2:c̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

iG(N,N)
ab (t, t′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

aa(t) = a(H)
a (t) ≡ exp[iHt] aa exp[−iHt] , (12a)

a†a(t) =
[

a(H)
a (t)

]†

≡ exp[iHt] a†a exp[−iHt] . (12b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators and some two-body
quantities such as the ground-state energy. One can de-
fine two-, three-, ..., N -particle propagators in a similar
way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

G(N,N)
ab = G(N,N) (0)

ab +
∑

cd

G(N,N) (0)
ac Σcd G(N,N)

db , (13)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
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considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)

and as a linear combination of pair propagators between
the ground states of (N±2, N), (N±4, N±2), ... systems
in the case of G12 and G21

G12
ab(t, t

′) = −i 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉

= −i
even
∑

N

c∗N−2cN 〈ψN−2
0 |T {aa(t)āb(t′)} |ψN

0 〉

≡
even∑

N

c∗N−2cN G12 (N−2,N)
ab (t, t′) , (24)

4

considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t
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even
∑

N

cN |ψN
0 〉 , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (16)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (21a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (21b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (21c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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ā†b(t) ≡ ηba
†

b̄
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plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as
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where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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ā†b(t) ≡ ηba
†

b̄
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (26b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (26c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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ā†a(t)āb(t
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basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
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cN |ψN
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i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
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N
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... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)
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basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as
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ab carry two additional labels g1 and g2 that
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the

Gorkov equations
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡





Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)



 , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

!
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k 〉 = [H − µN ]|ψN±1

k 〉
= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (38)
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normal and anomalous irreducible self-energies. Working
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Σ
!
ab(ω) ≡





Σ! 11
ab (ω) Σ! 12

ab (ω)

Σ! 21
ab (ω) Σ! 22

ab (ω)



 , (33)
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Σ
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Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
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(0)
ab (ω)+
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cd

G
(0)
ac (ω)Σ

!
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As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
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ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
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Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
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Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
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∑
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0 〉

+ iθ(t′ − t)
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N
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The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that
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(22)), one obtains (here and in the following all sums over
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= −i
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0 |T

{
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†
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}
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0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
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′)|ψN
0 〉+ iθ(t′ − t)
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|cN |2〈ψN
0 |a†b(t
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= −iθ(t− t′)
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N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
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0 〉

+ iθ(t′ − t)
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0 −µN)t 〈ψN
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The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that
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= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (38)
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the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (52)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (53a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (53b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (53c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (53d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (54a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (54b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (55a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (55b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (56)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (41). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (41).
In analogy to Eq. (42) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (57a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (57b)

Notice that, as states |Ψ0〉 and |Ψk〉 are not characterized
by a definite particle number, such spectroscopic factors
do not have the sharp physical interpretation of the ones
introduced in Eq. (42). However, similarly to what dis-
cussed in Sec. III C, while S+

k (S−
k ) contains contribu-

tions from the addition (removal) of a nucleon to (from)
systems with different particle number, the dominating
term remains the one involving the targeted system.
One can finally introduce a Nambu representation for

the Lehmann form of the propagators by defining the row
and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

, (58a)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

, (58b)

where A and A† have been introduced in Eq. (26), and
by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (59)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (34), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (60)
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the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (52)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (53a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (53b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (53c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (53d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (54a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (54b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (55a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (55b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (56)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (41). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (41).
In analogy to Eq. (42) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (57a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (57b)

Notice that, as states |Ψ0〉 and |Ψk〉 are not characterized
by a definite particle number, such spectroscopic factors
do not have the sharp physical interpretation of the ones
introduced in Eq. (42). However, similarly to what dis-
cussed in Sec. III C, while S+

k (S−
k ) contains contribu-

tions from the addition (removal) of a nucleon to (from)
systems with different particle number, the dominating
term remains the one involving the targeted system.
One can finally introduce a Nambu representation for

the Lehmann form of the propagators by defining the row
and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

, (58a)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

, (58b)

where A and A† have been introduced in Eq. (26), and
by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (59)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (34), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (60)

✺ Set eigenstates of
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The integral representation of the theta function is then inserted to obtain

G21
ab(ω) ≈

∑

N

c∗N+2cN
∑

k

〈ψN+2
0 |ā†a|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

c∗N+2cN
∑

k

〈ψN+2
0 |a†b|ψ

N+1
k 〉〈ψN+1

k |ā†a|ψN
0 〉

ω + [EN+1
k − EN

0 − µ]− iη

=
∑

N

c∗N+2cN
∑

k

Ȳk (N+2)∗
a X k (N)

b

ω − E+(N)
k + iη

+
∑

N

c∗N+2cN
∑

k

X̄ k (N)
a Yk (N+2)∗

b

ω + E+ (N)
k − iη

(46)

where Eqs. (40)-(41) have been used and the additional convention

X̄ k (N)
a ≡ 〈ψN+1

k |ā†a|ψN
0 〉 , (47a)

Ȳk (N)
a ≡ 〈ψN−1

k |āa|ψN
0 〉 , (47b)

has been introduced. Following the same steps one derives the Lehmann representation for the remaining Gorkov
function

G12
ab(ω) =

∑

N

c∗N−2cN
∑

k

X k (N−2)∗
a Ȳk (N)

b

ω + E− (N)
k + iη

+
∑

N

c∗NcN+2

∑

k

Yk (N)
a X̄ k (N−2)∗

b

ω − E− (N)
k − iη

. (48)

Similarly to the normal propagator, the anomalous Green’s function is decomposed into a sum of terms which contain
poles corresponding to the excitation energies in the various N -particle systems.

B. Approximate form

So far a Lehmann representation that is in the form
of sums of spectral Green’s functions defined at fixed N
has been obtained. It is therefore characterized by poles
associated with many values of N . This is not convenient
both for practical and conceptual reasons. Even if at each
step |Ψ0〉 can be expanded according to Eq. (14), the
purpose of its introduction is exactly to avoid tracking
such a decomposition explicitly; i.e. coefficients cN will
remain unknown and should not appear in any of the final
forms of the equations that are actually implemented.

With that in mind, instead of the eigenstates of Ω and
N introduced in (37), one can consider a complete set of
eigenstates of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (49)

which are normalized to unity

〈Ψk|Ψk〉 = 1 . (50)

Employing such a set of states to derive the Lehmann
representation, G11 reads

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −iθ(t− t′)〈Ψ0|aa(t)a†b(t
′)|Ψ0〉+ iθ(t′ − t)〈Ψ0|a†b(t

′)aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa(t)|Ψk〉〈Ψk|a†b(t
′)|Ψ0〉+ iθ(t′ − t)

∑

k

〈Ψ0|a†b(t
′)|Ψk〉〈Ψk|aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|eiΩtaae
−iΩt|Ψk〉〈Ψk|eiΩt′a†be

−iΩt′ |Ψ0〉

+ iθ(t′ − t)
∑

k

〈Ψ0|eiΩt′a†be
−iΩt′ |Ψk〉〈Ψk|eiΩtaae

−iΩt|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′)

+ iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) . (51)

By inserting the integral representation of the theta func- tion and reading out the Fourier transform one obtains
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such a decomposition explicitly; i.e. coefficients cN will
remain unknown and should not appear in any of the final
forms of the equations that are actually implemented.
With that in mind, instead of the eigenstates of Ω and

N introduced in (38), one can consider a complete set of
eigenstates of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (50)

which are normalized to unity

〈Ψk|Ψk〉 = 1 . (51)

Employing such a set of states to derive the Lehmann
representation, G11 reads

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −iθ(t− t′)〈Ψ0|aa(t)a†b(t
′)|Ψ0〉+ iθ(t′ − t)〈Ψ0|a†b(t

′)aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa(t)|Ψk〉〈Ψk|a†b(t
′)|Ψ0〉+ iθ(t′ − t)

∑

k

〈Ψ0|a†b(t
′)|Ψk〉〈Ψk|aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|eiΩtaae
−iΩt|Ψk〉〈Ψk|eiΩt′a†be

−iΩt′ |Ψ0〉

+ iθ(t′ − t)
∑

k

〈Ψ0|eiΩt′a†be
−iΩt′ |Ψk〉〈Ψk|eiΩtaae

−iΩt|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′)

+ iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) . (52)

By inserting the integral representation of the theta func-
tion and reading out the Fourier transform one obtains
the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (53)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (54a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (54b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (54c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (54d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (55a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (55b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (56a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (56b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (57)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (42). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (42).
In analogy to Eq. (43) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (58a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (58b)

✺ Lehmann representation

✺ Generalized spectroscopic factors
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∣
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a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (54a)

G12
ab(ω) =

∑

k

{
Ūk
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ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (57)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (42). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (42).
In analogy to Eq. (43) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (58a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (58b)

define

9

purpose of its introduction is exactly to avoid tracking
such a decomposition explicitly; i.e. coefficients cN will
remain unknown and should not appear in any of the final
forms of the equations that are actually implemented.
With that in mind, instead of the eigenstates of Ω and

N introduced in (38), one can consider a complete set of
eigenstates of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (50)

which are normalized to unity

〈Ψk|Ψk〉 = 1 . (51)

Employing such a set of states to derive the Lehmann
representation, G11 reads

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −iθ(t− t′)〈Ψ0|aa(t)a†b(t
′)|Ψ0〉+ iθ(t′ − t)〈Ψ0|a†b(t

′)aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa(t)|Ψk〉〈Ψk|a†b(t
′)|Ψ0〉+ iθ(t′ − t)

∑

k

〈Ψ0|a†b(t
′)|Ψk〉〈Ψk|aa(t)|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|eiΩtaae
−iΩt|Ψk〉〈Ψk|eiΩt′a†be

−iΩt′ |Ψ0〉

+ iθ(t′ − t)
∑

k

〈Ψ0|eiΩt′a†be
−iΩt′ |Ψk〉〈Ψk|eiΩtaae

−iΩt|Ψ0〉

= −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′)

+ iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) . (52)

By inserting the integral representation of the theta func-
tion and reading out the Fourier transform one obtains
the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (53)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (54a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (54b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (54c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (54d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (55a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (55b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (56a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (56b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (57)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (42). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (42).
In analogy to Eq. (43) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (58a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (58b)

where
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purpose of its introduction is exactly to avoid tracking
such a decomposition explicitly; i.e. coefficients cN will
remain unknown and should not appear in any of the final
forms of the equations that are actually implemented.
With that in mind, instead of the eigenstates of Ω and

N introduced in (38), one can consider a complete set of
eigenstates of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (50)

which are normalized to unity
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Ūk
a Ūk∗
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, (54a)
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{
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Uk∗
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and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (56a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (56b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (57)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (42). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (42).
In analogy to Eq. (43) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (58a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (58b)

and
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G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (42)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k 〉 = [H − µN ]|ψN±1

k 〉
= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (43)

and one obtains

G11
ab(t, t

′) = −iθ(t− t′)
∑

N

|cN |2
∑

k

e−i[EN+1
k −EN

0 −µ](t−t′) 〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2
∑

k

ei[E
N−1
k

−EN
0 +µ](t−t′) 〈ψN

0 |a†b|ψ
N−1
k 〉〈ψN−1

k |aa|ψN
0 〉 . (44)

By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation

G11
ab(ω) =

∑

N

|cN |2
∑

k

〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

|cN |2
∑

k

〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉

ω + [EN−1
k − EN

0 + µ]− iη

Gab(ω) =
∑

k

X k (N)
a

∗
X k (N)

b

ω − E+ (N)
k + iη

+
∑

k

Yk (N)
a Yk (N)

b

∗

ω − E− (N)
k − iη

(45)

where the spectroscopic amplitudes in the N -particle system are defined as

X k (N)
a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (46a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (46b)

and the separation energies are

E+ (N)
k ≡EN+1

k − EN
0 (47a)

E− (N)
k ≡EN

0 − EN−1
k (47b)

E+
k ≡+ωk + µ (48a)

E−
k ≡−ωk + µ (48b)

From the amplitudes (46) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (49a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (49b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.



Gorkov equations (2)

✺ Gorkov equations

Normalization condition

Constraint: correct number of particles in average
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

energy-dependent eigenvalue problem

Iterative problem: the number of poles       grows with iterations
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for the unperturbed propagator, lead to

lim
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k
b =

∑
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Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
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such that (33) and (35) finally allows one to write the matrix equation

ω

(
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=
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(
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)(
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where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains
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(
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Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as
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)∣
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(
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(
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. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
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a,k

∣
∣Vk
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∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

Lehmann
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
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{

Y
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a Y
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b =
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cd

(ω − ΩU )
−1
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}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
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{
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(ω − ΩU )ea Y
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a =
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d
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}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(
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)

=
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(
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ab(ω) Σ12
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Σ21
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)(
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where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains
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(

Ūk
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)

=
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)(
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expression now evaluated at ω = ωk, which can be rewritten as
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b

(
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ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
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(
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)
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(
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The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
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a

ρaa =
∑

a,k
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∣
∣
2
, (67)

N =
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∣
∣Vk

a

∣
∣
2
, (68)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(69)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (70)
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with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (71)

and where C is a contour containing c on which f is analytic. Here one is interested in the case in which f(z) has a
simple pole at z = c, which means that the integrand in Eq. (71) has a pole of order n+ 2 at z = c and the integral
can be performed by means of the residue theorem. In particular, the n = 0 coefficient reads

a0 =
1

2πi

∫

C

f(z) dz

(z − c)
= lim

z→c

d

dz

[

(z − c)2
f(z)

(z − c)

]

. (72)

Performing a Laurent expansion of Gorkov’s equations (34) around ω = −ωk and extracting the coefficients of order
zero on both sides, one obtains

lim
ω→−ωk

d

dω

{

Y
k†
a Y

k
b + (ω + ωk)Fab(ω) = (ω + ωk) (ω − ΩU )

−1
ab

+
∑

cd

[

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b + (ω + ωk) (ω − ΩU )

−1
ac Σ̃cd(ω)Fdb(ω)

]
}

, (73)

where Eq. (61) has been used and the singular part in the dressed propagator has been isolated as follows

Gab(ω) =
Yk†

a Yk
b

ω + ωk − iη
+
∑

k′

Xk′

a X
k′†
b

ω − ωk′ + iη
+

∑

k′ #=k

Yk′†
a Yk′

b

ω + ωk′ − iη

≡ Yk†
a Yk

b

ω + ωk − iη
+ F

k
ab(ω) . (74)

After applying the derivative to all terms and dropping the ones that give zero in the limit ω → −ωk, one has

lim
ω→−ωk

{

F
k
ab(ω) = (ω − ΩU )

−1
ab +

∑

cd

[

− (ω − ΩU )
−2
ac Σ̃cd(ω)Y

k†
d Y

k
b

+ (ω − ΩU )
−1
ac

∂Σ̃cd(ω)

∂ω
Y

k†
d Y

k
b + (ω − ΩU )

−1
ac Σ̃cd(ω)F

k
db(ω)

]}

. (75)

Terms involving Fk cancel out thanks to

lim
ω→−ωk

{

F
k
ab(ω) =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)F

k
db(ω)

}

, (76)

that can be derived from the conjugate Gorkov equation

Gab(ω) = G
(0)
ab (ω) +

∑

cd

Gac(ω)Σcd(ω)G
(0)
db (ω) . (77)

Moreover, using Eq. (63) one obtains

lim
ω→−ωk

{

∑

a

(ω − ΩU )
−1
ea Y

k†
a Y

k
b = (ω − ΩU )

−1
eb +

∑

cd

(ω − ΩU )
−1
ec

∂Σ̃cd(ω)

∂ω
Y

k†
d Y

k
b

}

. (78)

Multiplying both sides of Eq. (78) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (79)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (80)

play the role of energy-dependent potentials
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auxiliary potential (35). Applying Wick’s theorem in the
derivation of the perturbative expansion, anomalous con-
tractions appear, and are afterwards identified with the
anomalous Gorkov propagators.
Once the unperturbed ground state is defined, one

writes down the perturbative series for the interacting
propagatorG and, by dressing it self-consistently, defines
normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σg1g2(ω)

Σ
!
ab(ω) ≡





Σ! 11
ab (ω) Σ! 12

ab (ω)

Σ! 21
ab (ω) Σ! 22

ab (ω)



 , (38)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ
!
ab(ω) ≡ Σab(ω)−Uab . (39)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

!
cd(ω)Gdb(ω) . (40)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where

the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(35) has a one-body character, i.e. it acts as a mean
field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (41)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (20)
into Eq. (26a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(27)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (42)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

energy-dependent eigenvalue problem

Iterative problem: the number of poles       grows with iterations
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

Lehmann
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

N =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (68)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(69)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (70)
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with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (71)

and where C is a contour containing c on which f is analytic. Here one is interested in the case in which f(z) has a
simple pole at z = c, which means that the integrand in Eq. (71) has a pole of order n+ 2 at z = c and the integral
can be performed by means of the residue theorem. In particular, the n = 0 coefficient reads

a0 =
1

2πi

∫

C

f(z) dz

(z − c)
= lim

z→c

d

dz

[

(z − c)2
f(z)

(z − c)

]

. (72)

Performing a Laurent expansion of Gorkov’s equations (34) around ω = −ωk and extracting the coefficients of order
zero on both sides, one obtains

lim
ω→−ωk

d

dω

{

Y
k†
a Y

k
b + (ω + ωk)Fab(ω) = (ω + ωk) (ω − ΩU )

−1
ab

+
∑

cd

[

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b + (ω + ωk) (ω − ΩU )

−1
ac Σ̃cd(ω)Fdb(ω)

]
}

, (73)

where Eq. (61) has been used and the singular part in the dressed propagator has been isolated as follows

Gab(ω) =
Yk†

a Yk
b

ω + ωk − iη
+
∑

k′

Xk′

a X
k′†
b

ω − ωk′ + iη
+

∑

k′ #=k

Yk′†
a Yk′

b

ω + ωk′ − iη

≡ Yk†
a Yk

b

ω + ωk − iη
+ F

k
ab(ω) . (74)

After applying the derivative to all terms and dropping the ones that give zero in the limit ω → −ωk, one has

lim
ω→−ωk

{

F
k
ab(ω) = (ω − ΩU )

−1
ab +

∑

cd

[

− (ω − ΩU )
−2
ac Σ̃cd(ω)Y

k†
d Y

k
b

+ (ω − ΩU )
−1
ac

∂Σ̃cd(ω)

∂ω
Y

k†
d Y

k
b + (ω − ΩU )

−1
ac Σ̃cd(ω)F

k
db(ω)

]}

. (75)

Terms involving Fk cancel out thanks to

lim
ω→−ωk

{

F
k
ab(ω) =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)F

k
db(ω)

}

, (76)

that can be derived from the conjugate Gorkov equation

Gab(ω) = G
(0)
ab (ω) +

∑

cd

Gac(ω)Σcd(ω)G
(0)
db (ω) . (77)

Moreover, using Eq. (63) one obtains

lim
ω→−ωk

{

∑

a

(ω − ΩU )
−1
ea Y

k†
a Y

k
b = (ω − ΩU )

−1
eb +

∑

cd

(ω − ΩU )
−1
ec

∂Σ̃cd(ω)

∂ω
Y

k†
d Y

k
b

}

. (78)

Multiplying both sides of Eq. (78) by (ω − ΩU )fe and summing over e yields

lim
ω→−ωk

{

Y
k†
f Y

k
b = δfb +

∑

d

∂Σ̃fd(ω)

∂ω
Y

k†
d Y

k
b

}

. (79)

Multiplying by Yk
f from the left, summing over index f and renaming (f, d) to (a, b) one finally obtains the normal-

ization condition

∑

a

(

Vk
a Uk

a

)
(

Vk∗
a

Uk∗
a

)

= 1 +
∑

ab

(

Vk
a Uk

a

) ∂Σab(ω)

∂ω

∣
∣
∣
∣
−ωk

(

Vk∗
a

Uk∗
a

)

, (80)

play the role of energy-dependent potentials
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auxiliary potential (35). Applying Wick’s theorem in the
derivation of the perturbative expansion, anomalous con-
tractions appear, and are afterwards identified with the
anomalous Gorkov propagators.
Once the unperturbed ground state is defined, one

writes down the perturbative series for the interacting
propagatorG and, by dressing it self-consistently, defines
normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σg1g2(ω)

Σ
!
ab(ω) ≡





Σ! 11
ab (ω) Σ! 12

ab (ω)

Σ! 21
ab (ω) Σ! 22

ab (ω)



 , (38)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ
!
ab(ω) ≡ Σab(ω)−Uab . (39)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

!
cd(ω)Gdb(ω) . (40)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where

the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(35) has a one-body character, i.e. it acts as a mean
field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (41)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (20)
into Eq. (26a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(27)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (42)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions

  Objective
{ Short term      ➟ Self-consistent second order

Longer term   ➟ Self-consistent Faddeev-QRPA
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k
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cd,k
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d̄
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)

with the normalization condition

✺ HFB problem is recovered
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Σ11 (1) = Σ12 (1) =

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.

D. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the
propagators when they are computed at first order only, Eqs. (67) and (82) read

ωk

(

Uk
a

V k
a

)

=
∑

b

(

tab − µab + Λab h̃ab

h̃†
ab −tab + µab − Λab

) (

Uk
b

V k
b

)∣
∣
∣
∣
ωk

, (84)

which represents the HFB eigenvalue problem, usually written as

Ek

(

Uk

V k

)

=

(

h− µ h̃
h̃† −(h− µ)†

)(

Uk

V k

)

≡ ΩHFB

(

Uk

V k

)

, (85)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case
U and V are the components of the unitary Bogoliubov
quasiparticle transformation







aa =
∑

k Ū
k
a βk + V k∗

a β†
k

a†a =
∑

k Ū
k∗
a β†

k + V k
a βk .

(86)

Moreover, the normalization condition (80) reduces in
this case to the well-known identity

∑

a

∣
∣Y

k
a

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
+
∑

a

∣
∣V k

a

∣
∣
2
= 1 , (87)

which proves that when the self-energy is computed
at first order only, one recovers the Hartree-Fock-
Bogoliubov scheme. Let us recall that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular by the fragmen-
tation of the quasi-particle strength) such that they do
not correspond anymore to standard Hartree-Fock and
Bogoliubov potentials.

E. Second-order self-energies

Let us now discuss the second-order contributions to
both the normal and anomalous self-energies. In Figs.
2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order
diagrams is discussed in App. C. Before addressing their

FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

FIG. 3. Second-order anomalous self-energies Σ21 (2′) (left)

and Σ21 (2′′) (right).

✺ Energy-independent self-energy

energy-independent eigenvalue problem
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where only the proper self-energy appears because of the energy independence of the auxiliary potential. Similarly
one can derive a condition for the Gorkov amplitude X as

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k†
a

∂Σab(ω)

∂ω

∣
∣
∣
∣
ωk

X
k
b . (81)

C. First-order self-energies

In Fig. 1 the diagrams contributing to normal and anomalous first-order (irreducible) self-energies are displayed. For
the identification of the terms entering the irreducible self-energy the reader can refer to App. B. The diagrammatic
rules for Gorkov’s propagators and the evaluation of all self-energy diagrams are discussed in App. C while the
Φ-derivability of such self-energy terms is addressed in App. D. Let us consider the four first-order self-energies
diagrams. They are computed in Eqs. (C18), (C20), (C23) and (C24), and can be written as

Σ11 (1)
ab =

∑

cd,k

V̄acbd Vk∗
d Vk

c ≡ Λab = −Σ22 (1)
ab , (82a)

=
∑

cd,k

V̄bdac

(

Vk∗
c Vk

d

)∗
=

[

Σ11 (1)
ba

]∗

= Λ†
ab

Σ22 (1)
ab = −

∑

cd,k

V̄acbd Vk∗
d Vk

c = −
∑

cd

V̄acbd ρdc = −Λab , (82b)

Σ12 (1)
ab =

1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d ≡ h̃ab =
[

Σ21 (1)
ba

]∗

, (82c)

Σ21 (1)
ab =

1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d =
1

2

∑

cd

V̄ābc̄d ρ̃
∗
dc =

[

Σ12 (1)
ba

]∗

= h̃†
ab , (82d)

where the normal density matrix ρab has been defined in Eq. (69) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (83)

is the anomalous density matrix.
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E. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the

propagators when they are computed at first order only, Eqs. (69) and (96) read

�

b

�
tab + Λab − µ δab h̃ab

h̃†
ab

−tab − Λab + µ δab

��
Uk

b

V k

b

�
= ωk

�
Uk

a

V k

a

�
, (98)

which represents the HFB eigenvalue problem, usually written as

ΩHFB

�
Uk

V k

�
≡

�
h− µ h̃
h̃† −(h− µ)†

��
Uk

V k

�
= Ek

�
Uk

V k

�
, (99)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case

U and V are the components of the unitary Bogoliubov

quasiparticle transformation






aa =
�

k
Ūk

a
βk + V k∗

a
β†
k

a†
a
=

�
k
Ūk∗
a

β†
k
+ V k

a
βk .

(100)

Moreover, the normalization condition (94) reduces in

this case to the well-known identity

�

a

��Yk

a

��2 =

�

a

��Uk

a

��2 +
�

a

��V k

a

��2 = 1 , (101)

which confirms that when the self-energy is computed

at first order only, one recovers the Hartree-Fock-

Bogoliubov scheme. Let us recall that when higher or-

ders are included in the calculation, first-order terms are

self-consistently modified (in particular by the fragmen-

tation of the quasi-particle strength) such that they do

not correspond anymore to standard Hartree-Fock and

Bogoliubov potentials.

F. Second-order self-energies

Let us now discuss the second-order contributions to

both the normal and anomalous self-energies. In Figs.

FIG. 2. Second-order normal self-energies Σ11 (2�) (left) and

Σ11 (2��) (right).

2 and 3 the four types of normal and anomalous self-

energies are depicted. The evaluation of all second-order

FIG. 3. Second-order anomalous self-energies Σ21 (2�) (left)

and Σ21 (2��) (right).

diagrams is discussed in App. C. Before addressing their

expressions, let us introduce the quantities

Mk1k2k3
a

≡
�

ijk

V̄akij Ūk1
i
Ūk2
j
Vk3
k

, (102a)

Pk1k2k3
a

≡
�

ijk

V̄
ak̄ij̄

Ūk1
i
V̄k2
j
Uk3
k

, (102b)

Rk1k2k3
a

≡
�

ijk

V̄
ak̄īj

V̄k1
i
Ūk2
j
Uk3
k

, (102c)

and

N k1k2k3
a

≡
�

ijk

V̄akij Vk1
i
Vk2
j
Ūk3
k

, (103a)

Qk1k2k3
a

≡
�

ijk

V̄
ak̄ij̄

Vk1
i
Uk2
j
V̄k3
k

, (103b)

Sk1k2k3
a

≡
�

ijk

V̄
ak̄īj

Uk1
i
Vk2
j
V̄k3
k

, (103c)

in terms of which the second-order self-energies are go-

ing to be expressed. Given that P and R can be ob-

tained from M through cyclic permutations of indices

{k1, k2, k2} and taking into account the symmetries of

the potential matrix elements, one sees that such quan-

tities display the properties
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∣
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∣
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∣
2
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2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order
diagrams is discussed in App. C. Before addressing their
expressions, let us introduce the quantities
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6

∑

{1,2,3}

∑

ijk

V̄akij Ūk1
i Ūk2

j Vk3
k , (87a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Ūk1
i V̄k2

j Uk3
k , (87b)

Rk1k2k3
a ≡

∑

ijk

V̄ak̄īj V̄k1
i Ūk2

j Uk3
k , (87c)
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ijk

V̄akij Vk1
i Vk2

j Ūk3
k , (88a)
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ijk
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i Uk2
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i Vk2

j V̄k3
k , (88c)

in terms of which the second-order self-energies are go-
ing to be expressed. Given that P and R can be ob-
tained from M through cyclic permutations of indices
{k1, k2, k2} and taking into account the symmetries of
the potential matrix elements, one sees that such quan-
tities display the properties

∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

†
=

∑

k1k2k3

Pk1k2k3
a Pk1k2k3

b

†
=

∑

k1k2k3

Rk1k2k3
a Rk1k2k3

b

†
, (89a)

and
∑

k1k2k3

Mk1k2k3
a Pk1k2k3

b

†
=

∑

k1k2k3

Mk1k2k3
a Rk1k2k3

b

†
=

∑

k1k2k3

Pk1k2k3
a Mk1k2k3

b

†

=
∑

k1k2k3

Pk1k2k3
a Rk1k2k3

b

†
=

∑

k1k2k3

Rk1k2k3
a Mk1k2k3

b

†
=

∑

k1k2k3

Rk1k2k3
a Pk1k2k3

b

†
. (89b)
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FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

FIG. 3. Second-order anomalous self-energies Σ21 (2′) (left)

and Σ21 (2′′) (right).

2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order
diagrams is discussed in App. C. Before addressing their
expressions, let us introduce the quantities

Ck1k2k3
a ≡ 1√

6

∑

{1,2,3}

∑

ijk

V̄akij Ūk1
i Ūk2

j Vk3
k , (87a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Ūk1
i V̄k2

j Uk3
k , (87b)

Rk1k2k3
a ≡

∑

ijk
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i Ūk2

j Uk3
k , (87c)
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6

∑
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∑

ijk
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i Vk2

j Ūk3
k , (88a)
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∑
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Sk1k2k3
a ≡

∑

ijk
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j V̄k3
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in terms of which the second-order self-energies are go-
ing to be expressed. Given that P and R can be ob-
tained from M through cyclic permutations of indices
{k1, k2, k2} and taking into account the symmetries of
the potential matrix elements, one sees that such quan-
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∑

k1k2k3

Mk1k2k3
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b

†
=

∑
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b

†
=

∑

k1k2k3
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b

†
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∑
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b

†
=

∑
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b

†
=

∑
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†
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∑
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=
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a Mk1k2k3

b

†
=

∑
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b

†
. (89b)
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3
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Mk1k2k3
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+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
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b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)
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+
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, (96a)
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One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain
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k1k2k3
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}

, (97b)
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ab (ω) =

∑

k1k2k3
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†Dk1k2k3
b
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+
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}

. (97c)
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which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
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W
Z





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=
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

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Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)
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which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as
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
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(100)

✺ Recast known energy dependence into new quantities

✺ Energy-dependent self-energy
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One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain
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+
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}

, (96a)
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, (96b)
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, (97a)
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k ≡

∑
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[

−Dk1k2k3
a Uk

a + Ck1k2k3
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† Vk
a

]

, (97b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (98a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (98b)

which grouped together with Eq. (97) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

, (99)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (99) let us expand Eq. (80) by inserting
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains
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c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term
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(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd
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The anomalous contributions to the self-energy at first
order are
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and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
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V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k
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where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
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d g
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b

a

h

e

(C25)

which reads
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy
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c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
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where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy
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which reads
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term
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V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k
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where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
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(C25)

which reads
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Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G
11
cd(ω

′)G11
fg(ω

′′)G11
he(ω

′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
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∑

cdefgh

V̄aecf V̄dgbh G
11
cd(ω

′)G11
fg(ω

′′)G11
he(ω

′ + ω′′ − ω) . (C26)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C27)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C26) one obtains

Σ11 (2′)
ab (ω) = −1

2

∫
dω′
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Ūk2
f Ūk2∗
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f Ūk2∗

g Vk3∗
h Vk3

e

ω − (ωk1 + ωk2 + ωk3) + iη
+

Vk1∗
c Vk1

d Vk2∗
f Vk2

g Ūk3
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}

. (C28)

With the same technique one can evaluate all other terms contributing to the second-order self-energy. One has

Σ11 (2′′)
ab (ω) = ↑ ω′ ↑ ω′′

d h̄

↓ ω′′′

c f

b

a

ḡ

e

(C29)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′
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dω′′
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.
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The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C31)

which yields
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V̄āēc̄f̄ V̄d̄ḡb̄h̄ G
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{

V̄k1
c V̄k1∗

d

ω′ − ωk1 + iη
+

Uk1∗
c Uk1

d

ω′ + ωk1 − iη
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+
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} {

V̄k3
h V̄k3∗

e

ω′ − ωk3 + iη
+

Uk3∗
h Uk3

e

ω′ + ωk3 − iη

}

=
1

2

∑

cdefgh,k1k2k3
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, (C32)

and

Σ22 (2′′)
ab (ω) = ↑ ω′ ↓ ω′′′
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c̄ f
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e

, (C33)

which is evaluated as
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The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = ↑ ω′ ↑ ω′′
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↓ ω′′′

c f

b̄

a

g

e

, (C35)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =
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=
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Ūk1
c V̄k1∗

d Ūk2
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yielding
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Ūk2
f V̄k2∗

g

ω′′ − ωk2 + iη
+

Vk2∗
f Uk2

g

ω′′ + ωk2 − iη

} {

V̄k3
h Ūk3∗

e

ω′ + ω′′ − ω − ωk3 + iη
+

Uk3∗
h Vk3

e

ω′ + ω′′ − ω + ωk3 − iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2
f V̄k2∗

g Uk3∗
h Vk3

e

ω − (ωk1 + ωk2 + ωk3) + iη
+

Vk1∗
c Uk1

d Vk2∗
f Vk2

g V̄k3
h Ūk3∗

e

ω + (ωk3 + ωk1 + ωk2)− iη

}

,

Finally

Σ21 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c̄ e

b

ā

h

f

, (C39)
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One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (96a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (96b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (96c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(97a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(97b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (98a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (98b)

which grouped together with Eq. (97) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

, (99)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (99) let us expand Eq. (80) by inserting
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the second-order self-energies in the form (94) and (96)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (100)

Eventually, the normalization condition for each pole k of the one-body Green’s function is

∑

a

[
∣
∣Uk

a

∣
∣
2
+

∣
∣Vk

a

∣
∣
2
]

+
∑

k1k2k3

[∣
∣
∣Wk1k2k3

k

∣
∣
∣

2
+
∣
∣
∣Zk1k2k3

k

∣
∣
∣

2
]

= 1 . (101)

Notice that one can also derive such a relation starting
from the normalization condition for the amplitudes Y,
Eq. (80).
The introduction of amplitudes W and Z in Eq. (97)

has led to the transformation of Gorkov’s equations, to
be solved for the energy-dependent single-particle propa-
gators, into an energy-independent eigenvalue problem
involving the diagonalization of the matrix Ξ, to be
solved for the (energy-independent) amplitude vectors
(U ,V ,W ,Z). The fact that Ξ is Hermitian implies that
the eigenvalues ωk are real. Moreover, in analogy with
the HFB problem, solutions come in pairs with opposite
sign, i.e. for any solution {Uk,Vk,Wk,Zk,ωk} there ex-
ist another solution {Vk∗,Uk∗,Z∗

k ,W∗
k ,−ωk}. This can

be checked either by substituting ω with −ω in the steps
that led to Eq. (99) or by re-deriving Eq. (99) starting
from Eq. (64) instead of Eq. (65).
Let us discuss in some detail the structure of Ξ. The

upper-left block

ΞHFB ≡
(

T − µ+ Λ h̃
h̃† −T + µ− Λ

)

(102)

represents the mean-field sector. If second-order self-
energies are zero, Ξ = ΞHFB and one recovers the

Hartree-Fock-Bogoliubov eigenvalue problem of fixed di-
mensionality (twice the size of the single-particle basis)
for the amplitudes U and V . Let us insist on the fact
that although no energy dependence is involved at first
order, some fractionation of the single-particle strength
is already accounted for at the HFB level, such that one
indeed deals with quasiparticle degrees of freedom. In
particular one can deduce from Eq. (86) that any quasi-
particle has an associated (generalized) spectroscopic fac-
tor (defined in Eq. (57)) which is smaller than one. Such
fractionation is an established consequence of static pair-
ing correlations that are explicitly treated at the HFB
level through particle number symmetry breaking.
The upper right

Ξ(2) ≡
(

C −D†

−D† C

)

(103)

and lower left Ξ(2)† blocks contain second-order contri-
butions representing the couplings between one quasipar-
ticle and three-quasiparticle configurations. Such cou-
plings further fragment the single-particle strength. In-
deed, following the iterative process leading to a self-
consistent solution of Gorkov’s equations, one observes

with the normalization condition
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

Expand in terms of W and Z

Energy independent eigenvalue problem
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and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

(65a)

(65b)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

(65c)

where A and A† have been introduced in Eq. (32), and

by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (66)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (40), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (67)

substituting the Lehmann representation (66) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (68)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (69)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (70)

such that (39) and (41) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (71)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (72)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (73)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (22) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (74)
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Results

✺ Calculations of 40-48Ca isotopes

✺ CEA-CCRT massively-parallel high-performance cluster

➟ Spherical harmonic oscillator basis

➟ Vlow-k from Ch-EFT potential with cutoff Λ = 2.1 & 2.5 fm-1

➟ NN interaction only

➟ ~ 58 000 cores, ~ 300 Tflops total

➟ Parallelized code

Essential for self-consistent second-order calculations



Binding energies

✺ Systematic along isotopic/isotonic chains become available

➟ Overbinding with A: traces need for (at least) NNN forces

➟ Second-order SCGF qualitatively different from second-order MBPT

➟ Correlation energy “consistent” with CCSD (quantitative analysis in progress)
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Binding energies

✺ Systematic along isotopic/isotonic chains become available

➟ Overbinding with A: traces need for (at least) NNN forces

➟ Second-order SCGF qualitatively different from second-order MBPT

➟ Correlation energy “consistent” with CCSD (quantitative analysis in progress)
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Spectral function

Dyson 1st order (HF) Gorkov 1st order (HFB)

Dyson 2nd order Gorkov 2nd order
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Dynamical fluctuations
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Shell structure evolution

✺ ESPE collect fragmentation of “single-particle” strengths from both N±1

➟ Correlations shift ESPE up in a non-uniform manner

[Baranger 1970]
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III. GENERALIZATION OF UMEYA-MUTO SUM RULE TO FOCK SPACE

Umeya-Muto sum rule [3] can be generalized to the case of a theory defined in Fock space, such as the Gorkov-Green’s

function formalism introduced above. Although the following derivation could be carried out for any initial many-body

state defined in Fock space |ΨJM
i �, let us now consider the ground state of the targeted nucleus to be in a Jπ = 0+

state, i.e. |Ψ00
0 �. The single-particle basis can be conveniently labelled by a = {na,πa, ja,ma, qa} = {na,ma,α},

where na represents the principal quantum number, πa the parity, ja the total angular momentum, ma its projection

along the z-axis and qa the isospin projection. In the following each roman single-particle index corresponds to such

set of quantum numbers.

In this case in the overlaps (15) and (16) the quantum numbers of the state |ΨJkMk
k � are constrained by the ones

of the creation and annihilation operators acting on |Ψ00
0 �. In particular one can define

Uk
a = �Ψ00

0 |āa|ΨJkMk
k �

= πa(−1)
ja �Ψ00

0 |(−1)
m anaα−ma |Ψ

JkMk
k �

= πa(−1)
ja C00

JkMkjama
�Ψ00

0 ||anaα||Ψ
JkMk
k �

= δJkja δMk−ma

πa(−1)ma

√
2ja + 1

�Ψ00
0 ||anaα||Ψ

JkMk
k �

≡ δκα δMk−ma (−1)
ma Unk

na [α] , (28)

and similarly

Ūk
a ≡ δκα δMkma Ū

nk

na [α] , (29)

Vk
a ≡ δκα δMk−ma (−1)

−ma Vnk

na [α] , (30)

V̄k
a ≡ δκα δMkma V̄

nk

na [α] . (31)

The effective single-particle energy of an orbit a is defined by

�a =

�

k

S+a
k E+

k +

�

k

S−a
k E−

k = taa +
�

cd

V̄acad ρdc , (32)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic

amplitudes defined through

S+a
k ≡

����ΨJkMk
k |a†a|Ψ00

0 �
���
2
=

��Uk
a

��2 (33)

S−a
k ≡

����ΨJkMk
k |aa|Ψ00

0 �
���
2
=

��Vk
a

��2 . (34)

One can show that such amplitudes are normalized to one

�

k

S+a
k +

�

k

S−a
k =

�

k

�
�Ψ00

0 |aa|ΨJkMk
k ��ΨJkMk

k |a†a|Ψ00
0 �+ �Ψ00

0 |a†a|Ψ
JkMk
k ��ΨJkMk

k |aa|Ψ00
0 �

�

= �Ψ00
0 |

�
aa, a

†
a

�
|Ψ00

0 �
= δaa
= 1 . (35)

By employing definitions (28)-(31) one can further specify the m-independence of the effective single-particle energy
defined in Eq. (32)

�naα =

�

k

S+naα
nk

E+(N)
k +

�

k

S−naα
nk

E−(N)
k , (36)

where the block-diagonal generalized spectroscopic amplitudes are now defined through

S+a
k = δκα δMk−ma

���Unk

na [α]

���
2
≡ δκα δMk−maS+naα

nk
(37)

S−a
k = δκα δMk−ma

���Vnk

na [α]

���
2
≡ δκα δMk−maS−naα

nk
. (38)
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Shell structure evolution

✺ ESPE collect fragmentation of “single-particle” strengths from both N±1

➟ Correlations shift ESPE up in a non-uniform manner

[Baranger 1970]

4

III. GENERALIZATION OF UMEYA-MUTO SUM RULE TO FOCK SPACE

Umeya-Muto sum rule [3] can be generalized to the case of a theory defined in Fock space, such as the Gorkov-Green’s

function formalism introduced above. Although the following derivation could be carried out for any initial many-body

state defined in Fock space |ΨJM
i �, let us now consider the ground state of the targeted nucleus to be in a Jπ = 0+

state, i.e. |Ψ00
0 �. The single-particle basis can be conveniently labelled by a = {na,πa, ja,ma, qa} = {na,ma,α},

where na represents the principal quantum number, πa the parity, ja the total angular momentum, ma its projection

along the z-axis and qa the isospin projection. In the following each roman single-particle index corresponds to such

set of quantum numbers.

In this case in the overlaps (15) and (16) the quantum numbers of the state |ΨJkMk
k � are constrained by the ones

of the creation and annihilation operators acting on |Ψ00
0 �. In particular one can define

Uk
a = �Ψ00

0 |āa|ΨJkMk
k �

= πa(−1)
ja �Ψ00

0 |(−1)
m anaα−ma |Ψ

JkMk
k �

= πa(−1)
ja C00

JkMkjama
�Ψ00

0 ||anaα||Ψ
JkMk
k �

= δJkja δMk−ma

πa(−1)ma

√
2ja + 1

�Ψ00
0 ||anaα||Ψ

JkMk
k �

≡ δκα δMk−ma (−1)
ma Unk

na [α] , (28)

and similarly

Ūk
a ≡ δκα δMkma Ū

nk

na [α] , (29)

Vk
a ≡ δκα δMk−ma (−1)

−ma Vnk

na [α] , (30)

V̄k
a ≡ δκα δMkma V̄

nk

na [α] . (31)

The effective single-particle energy of an orbit a is defined by

�a =

�

k

S+a
k E+

k +

�

k

S−a
k E−

k = taa +
�

cd

V̄acad ρdc , (32)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic

amplitudes defined through

S+a
k ≡

����ΨJkMk
k |a†a|Ψ00

0 �
���
2
=

��Uk
a

��2 (33)

S−a
k ≡

����ΨJkMk
k |aa|Ψ00

0 �
���
2
=

��Vk
a

��2 . (34)

One can show that such amplitudes are normalized to one

�

k

S+a
k +

�

k

S−a
k =

�

k

�
�Ψ00

0 |aa|ΨJkMk
k ��ΨJkMk

k |a†a|Ψ00
0 �+ �Ψ00
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k ��ΨJkMk

k |aa|Ψ00
0 �

�

= �Ψ00
0 |

�
aa, a

†
a

�
|Ψ00

0 �
= δaa
= 1 . (35)

By employing definitions (28)-(31) one can further specify the m-independence of the effective single-particle energy
defined in Eq. (32)

�naα =

�

k

S+naα
nk

E+(N)
k +

�

k

S−naα
nk

E−(N)
k , (36)

where the block-diagonal generalized spectroscopic amplitudes are now defined through

S+a
k = δκα δMk−ma

���Unk

na [α]

���
2
≡ δκα δMk−maS+naα

nk
(37)

S−a
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2
≡ δκα δMk−maS−naα

nk
. (38)
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Next

✺ Implementation of NNN forces

✺ Formulation of particle-number restored Gorkov theory

✺ Systematic comparison with CC in doubly magic ±1 and ±2 nuclei

[in collaboration with G. Hagen]


