Self-consistent Gorkov-Green's function calculations from Chiral-EFT interactions

V. Somà ${ }^{1}$, T. Duguet ${ }^{1,2}$, C. Barbieri ${ }^{3}$
${ }^{1}$ CEA/IRFU/SPhN, France
${ }^{2}$ NSCL and Michigan State University, USA
${ }^{3}$ University of Surrey, UK

FUSTIPEN Topical Meeting, GANIL 3 March 2011

Outline

粦 Introduction and goals

粦 Elements of Green＇s function methods

絭 Preliminary results

䊩 Outlook

Introduction and goals

Goals

1) Tackle finite-nuclei superfluidity in an ab-initio fashion
2) Revisit many-body techniques using low-momentum interactions
3) Study the effect of NNN forces
4) Connect with (non-empirical) energy density functionals

Towards a unified description of nuclei

"Exact" methods (GFMC, NCSM, ...)
Ab-initio approaches (CC, SCGF, IM-SRG)
$\xrightarrow[\text { Shell model }]{\longrightarrow}$
SR and MR energy density functionals

State-of-the-art ab-initio nuclear structure theory

粦 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]

State-of-the-art ab-initio nuclear structure theory

粦 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
$\rightarrow \rightarrow{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}[$ Hagen et al. 2007]
$\cdots{ }^{16} \mathrm{O},{ }^{22} \mathrm{O},{ }^{24} \mathrm{O},{ }^{28} \mathrm{O}$ [Hagen et al. 2009]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]

State-of-the-art ab-initio nuclear structure theory

粦 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
$\xrightarrow{\prime \prime} \rightarrow{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}$ [Tsukiyama et al. 2010]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]

State-of-the-art ab-initio nuclear structure theory

类 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]
$m \rightarrow{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}$ [Barbieri, Dickhoff 2004]
$m \rightarrow{ }^{56} \mathrm{Ni}$ [Barbieri, Hjorth-Jensen 2009]

State-of-the-art ab-initio nuclear structure theory

粦 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]
\Rightarrow Methods limited to doubly-closed-shell ± 1 nuclei

State-of-the-art ab-initio nuclear structure theory

类 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]
\Rightarrow Methods limited to doubly-closed-shell ± 1 nuclei
\longrightarrow Explicit treatment of pairing correlations is missing

State-of-the-art ab-initio nuclear structure theory

类 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]
\Rightarrow Methods limited to doubly-closed-shell ± 1 nuclei
\longrightarrow Explicit treatment of pairing correlations is missing
\longrightarrow Extensions required to tackle open-shell nuclei

State-of-the-art ab-initio nuclear structure theory

类 Methods for an ab-initio description of medium-mass nuclei as of 2010
(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]
(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]
(3) Self-consistent Dyson-Green's function [Barbieri, Dickhoff]
\Rightarrow Methods limited to doubly-closed-shell ± 1 nuclei
\longrightarrow Explicit treatment of pairing correlations is missing
\longrightarrow Extensions required to tackle open-shell nuclei

Dyson-Green's functions
\longrightarrow Gorkov-Green's functions

Low-momentum nuclear interactions

" \rightarrow Traditional "hard core" potentials
(1) Unconstrained

$$
\left\{\begin{array}{l}
\text { short-range } \\
\text { low-k - high-k coupling }
\end{array}\right.
$$

(2) Low $-k \leftrightarrow$ high $-k$ couplings make N -body calculations unbearable
(3) Details of high-k physics irrelevant to low-energy nuclear structure

Low-momentum nuclear interactions

(1) Unconstrained

$$
\left\{\begin{array}{l}
\text { short-range } \\
\text { low-k - high-k coupling }
\end{array}\right.
$$

(2) Low- $k \leftrightarrow$ high- k couplings make N -body calculations unbearable
(3) Details of high-k physics irrelevant to low-energy nuclear structure
(1) Universal low-k physics unchanged
(2) Low- $k \leftrightarrow$ high- k decoupled
(3) High-k physics screened out

Low-momentum nuclear interactions

类 Renormalization group transformations to decouple low and high momenta
(a) $V_{\text {low-k }}$
[Bogner, Furnstahl,

(b)
$\rightarrow \rightarrow$ NN scattering phase-shifts and deuteron binding energy conserved

Low－momentum nuclear interactions

粦 Universality

粪 RG transformations induce many－body forces
粦 N －body observables are RG invariant if and only if
1）Induced N－body（e．g．3－body）forces are kept
2） N －body calculation is exact
RG cutoff dependence helps tracking
1）Importance of omitted N－body forces
2）Incomplete N －body calculation

Low-momentum nuclear interactions

Universality

Perturbativeness?

[Bogner, Furnstahl, Schwenk 2009] [Bogner, Furnstahl, Nogga, Schwenk 2009]

Three-body forces

粦 Realistic microscopic calculations cannot avoid the use of NNN forces
${ }^{\circ}$ Binding energies, saturation properties and radii

- Shell evolution
${ }^{\circ}$ Spin-orbit splitting
- Three-nucleon scattering

[Otsuka et al. 2010]
\rightarrow Dripline location in O isotopes $\left({ }^{24} \mathrm{O}\right)$ possibly due to NNN physics

Three-body forces

粦 Realistic microscopic calculations cannot avoid the use of NNN forces
${ }^{\circ}$ Binding energies, saturation properties and radii

- Shell evolution
- Spin-orbit splitting
- Three-nucleon scattering

粦 Currently: microscopic NNN interactions only in light systems and INM

- Normal-ordered (average) part of NNN possibly sufficient
\rightarrow Coupled-cluster in ${ }^{4}$ He [Hagen et al. 2007]
\rightarrow SCGF in INM [Somà, Bożek 2008]
\rightarrow Perturbation theory in INM [Hebeler, Schwenk 2009]

Connection to non-empirical EDF

粦 Standard EDF parameterizations (e.g. Skyrme, Gogny, relativistic)

- Successful in major shell where adjusted
${ }^{\circ}$ Lack predictive power in new regions of interest

Efforts to extend and connect with more fundamental approaches
粦 Non-empirical EDF from low-momentum interactions
${ }^{\circ}$ Pairing channel [Duguet et al.]
${ }^{\circ}$ Particle-hole channel [Gebremariam et al.]

Benchmarks needed from many-body methods that share the same features

Elements of Green's function methods

Dyson Green＇s functions

粦 Many－body Hamiltonian

$$
H \equiv T+V^{N N}+V^{N N N} \equiv \sum_{a b} t_{a b} a_{a}^{\dagger} a_{b}+\frac{1}{(2!)^{2}} \sum_{a b c d} \bar{V}_{a b c d}^{N N} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}+\frac{1}{(3!)^{2}} \sum_{a b c d e f} \bar{V}_{a b c c e f f}^{N N N} a_{a}^{\dagger} a_{b}^{\dagger} a_{c}^{\dagger} a_{f} a_{e} a_{d}
$$

粦 One－body propagator or Green＇s function

$$
i G_{a b}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}^{N}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}^{N}\right\rangle
$$

$$
\bar{\equiv}
$$

粦 Heisenberg representation for creation／annihilation operators

$$
\begin{aligned}
a_{b}(t) & =a_{b}^{(H)}(t) \equiv \exp [i H t] a_{b} \exp [-i H t] \\
a_{b}^{\dagger}(t) & =\left[a_{b}^{(H)}(t)\right]^{\dagger} \equiv \exp [i H t] a_{b}^{\dagger} \exp [-i H t]
\end{aligned}
$$

粦 Fourier transform to energy domain

$$
G_{a b}(\omega)=\int d\left(t-t^{\prime}\right) e^{i \omega\left(t-t^{\prime}\right)} G_{a b}\left(t, t^{\prime}\right)
$$

类 Hierarchy of coupled equations between 1－body，2－body，．．．N－body propagators

Observables (1)

1) Separation energy spectrum

$$
G_{a b}(\omega)=\sum_{k} \frac{\mathcal{X}_{a}^{k(N)^{*}} \mathcal{X}_{b}^{k(N)}}{\omega-E_{k}^{+(N)}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{a}^{k(N)} \mathcal{Y}_{b}^{k(N)^{*}}}{\omega-E_{k}^{-(N)}-i \eta}
$$

Lehmann representation

where $\left\{\begin{array}{l}\mathcal{X}_{a}^{k(N)} \equiv\left\langle\psi_{k}^{N+1}\right| a_{a}^{\dagger}\left|\psi_{0}^{N}\right\rangle \\ \mathcal{Y}_{a}^{k(N)} \equiv\left\langle\psi_{k}^{N-1}\right| a_{a}\left|\psi_{0}^{N}\right\rangle\end{array}\right.$

$$
\text { and } \quad\left\{\begin{array}{l}
E_{k}^{+(N)} \equiv E_{k}^{N+1}-E_{0}^{N} \\
E_{k}^{-(N)} \equiv E_{0}^{N}-E_{k}^{N-1}
\end{array}\right.
$$

2) Spectroscopic factors

$$
\begin{aligned}
& \left.S_{k}^{N+1} \equiv \sum_{a}\left|\left\langle\psi_{k}^{N+1}\right| a_{a}^{\dagger}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{X}_{a}^{k(N)}\right|^{2} \\
& \left.S_{k}^{N-1} \equiv \sum_{a}\left|\left\langle\psi_{k}^{N-1}\right| a_{a}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{Y}_{a}^{k(N)}\right|^{2}
\end{aligned}
$$

Separation energies

Observables (2)

3) One-body observables with $\hat{O}=\sum_{a b} O_{a b} a_{a}^{\dagger} a_{b}$

$$
\langle\hat{O}\rangle=\sum_{a b} \int \frac{d \omega}{2 \pi} O_{a b} G_{a b}(\omega)
$$

\rightarrow e.g. kinetic energy $\langle\hat{T}\rangle=\sum_{a b} \int \frac{d \omega}{2 \pi} t_{a b} G_{a b}(\omega)$
4) Koltun sum rule

$$
\langle\hat{H}\rangle=E_{0}=\sum_{a b} \int \frac{d \omega}{2 \pi}\left[t_{a b}+\omega \delta_{a b}\right] G_{a b}(\omega)
$$

$\quad \rightarrow$ two-body observable computed from the one-body propagator

Dyson equation \& self-energy

类 Perturbative expansion of one-body propagator

粦 Irreducible self-energy

Solving Dyson equation

类 Different approximations to the self-energy (self-consistent approaches)

\Rightarrow (Nearly) degenerate systems: breakdown of truncated expansions \longrightarrow e.g. pairing correlations: approximation schemes face Cooper instability
Non-perturbative treatment of such an instability needed

Gorkov ansatz

* 畨 Ansatz $\quad \ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu$

粦 Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\quad \Omega=H-\mu N$
$\Rightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $\quad N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$

$$
\Rightarrow \Omega_{0}=\sum_{N^{\prime}}\left|c_{N^{\prime}}\right|^{2} \Omega_{0}^{N^{\prime}} \approx E_{0}^{N}-\mu N
$$

Gorkov Green's functions and equations

粦 Set of 4 Green's functions

$$
\begin{array}{ll}
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{b}^{a} & i G_{a b}^{21}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \\
i G_{a b}^{12}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv{ }_{\bar{b}}^{a} & i G_{a b}^{22}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv
\end{array}
$$

[Gorkov 1958]

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

$$
\Sigma_{a b}^{\star}(\omega) \equiv\binom{\Sigma_{a b}^{\star 11}(\omega) \Sigma_{a b}^{\star 12}(\omega)}{\Sigma_{a b}^{\star 21}(\omega) \Sigma_{a b}^{\star 22}(\omega)}
$$

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv \boldsymbol{\Sigma}_{a b}(\omega)-\mathbf{U}_{a b}
$$

Lehmann representation

粦 Set eigenstates of $\Omega \quad \Omega\left|\Psi_{k}\right\rangle=\Omega_{k}\left|\Psi_{k}\right\rangle$

\longrightarrow define | $\mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right\| \bar{a}_{a}^{\dagger}\left\|\Psi_{0}\right\rangle$ | $\left.\overline{\mathcal{L}}_{a}^{k *} \equiv\left\langle\Psi_{k}\right\|\left\|a_{a}^{\dagger}\right\| \Psi_{0}\right\rangle$
 $\mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right\| a_{a}\left\|\Psi_{0}\right\rangle$ |
| :--- | :--- |
| $\overline{\mathcal{V}}_{a}^{k *} \equiv\left\langle\Psi_{k}\right\| \bar{a}_{a}\left\|\Psi_{0}\right\rangle$ | |

粦 Lehmann representation

$$
\begin{array}{ll}
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\overline{\mathcal{U}}_{a}^{k} \overline{\mathcal{U}}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\mathcal{V}_{a}^{k *} \mathcal{V}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\} & G_{a b}^{21}(\omega)=\sum_{k}\left\{\frac{\overline{\mathcal{V}}_{a}^{k} \overline{\mathcal{U}}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\mathcal{U}_{a}^{k *} \mathcal{V}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\} \\
G_{a b}^{12}(\omega)=\sum_{k}\left\{\frac{\overline{\mathcal{U}}_{a}^{k} \overline{\mathcal{V}}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\mathcal{V}_{a}^{k *} \mathcal{U}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\} & G_{a b}^{22}(\omega)=\sum_{k}\left\{\frac{\overline{\mathcal{V}}_{a}^{k} \overline{\mathcal{V}}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\mathcal{U}_{a}^{k *} \mathcal{U}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
\end{array}
$$

where $\quad \omega_{k} \equiv \Omega_{k}-\Omega_{0} \quad$ and $\quad \begin{aligned} & E_{k}^{+} \equiv+\omega_{k}+\mu \\ & E_{k}^{-} \equiv-\omega_{k}+\mu\end{aligned}$

类 Generalized spectroscopic factors

$$
\begin{aligned}
& \mathcal{S}_{k}^{+}\left.\equiv \sum_{a}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
&\left.\mathcal{S}_{k}^{-} \equiv \sum_{a}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

Gorkov equations (2)

类 Gorkov equations $\xrightarrow{\text { Lehmann }}$ energy-dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

$\Sigma^{g_{1} g_{2}}(\omega)$ play the role of energy-dependent potentials
\longrightarrow Iterative problem: the number of poles ω_{k} grows with iterations
\longrightarrow Constraint: correct number of particles in average $N=\sum_{a, k}\left|\mathcal{V}_{a}^{k}\right|^{2}$
\longrightarrow Normalization condition $\sum_{a}\left(\mathcal{V}_{a}^{k} \mathcal{U}_{a}^{k}\right)\binom{\mathcal{V}_{a}^{k *}}{\mathcal{U}_{a}^{k *}}=1+\left.\sum_{a b}\left(\mathcal{V}_{a}^{k} \mathcal{U}_{a}^{k}\right) \frac{\partial \boldsymbol{\Sigma}_{a b}(\omega)}{\partial \omega}\right|_{-\omega_{k}}\binom{\mathcal{V}_{a}^{k *}}{\mathcal{U}_{a}^{k *}}$

Gorkov equations (2)

* Gorkov equations $\xrightarrow{\text { Lehmann }}$ energy-dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

$\Sigma^{g_{1} g_{2}}(\omega)$ play the role of energy-dependent potentials
\longrightarrow Iterative problem: the number of poles ω_{k} grows with iterations
\longrightarrow Constraint: correct number of particles in average $\quad N=\sum_{a, k}\left|\mathcal{V}_{a}^{k}\right|^{2}$
Normalization condition $\sum_{a}\left(\mathcal{V}_{a}^{k} \mathcal{U}_{a}^{k}\right)\binom{\mathcal{V}_{a}^{k *}}{\mathcal{U}_{a}^{k *}}=1+\left.\sum_{a b}\left(\mathcal{V}_{a}^{k} \mathcal{U}_{a}^{k}\right) \frac{\partial \boldsymbol{\Sigma}_{a b}(\omega)}{\partial \omega}\right|_{-\omega_{k}}\binom{\mathcal{V}_{a}^{k *}}{\mathcal{U}_{a}^{k *}}$
Objective $\begin{cases}\text { Short term } & " m \text { Self-consistent second order } \\ \text { Longer term } & " m \text { Self-consistent Faddeev-QRPA }\end{cases}$

1st order diagrams and HFB limit

* Energy-independent self-energy
$\Sigma_{a b}^{11(1)}=$

$$
\Sigma_{a b}^{11(1)}=\sum_{c d, k} \bar{V}_{a c b d} \mathcal{V}_{d}^{k *} \mathcal{V}_{c}^{k} \equiv \Lambda_{a b}=-\Sigma_{a b}^{22(1)}
$$

$\Sigma_{a b}^{12(1)}=$

$$
\Sigma_{a b}^{12(1)}=\frac{1}{2} \sum_{c d, k} \bar{V}_{a \bar{b} c \bar{d}} \mathcal{V}_{c}^{k *} \mathcal{U}_{d}^{k} \equiv \tilde{h}_{a b}=\left[\Sigma_{b a}^{21(1)}\right]^{*}
$$

类 HFB problem is recovered \longrightarrow energy-independent eigenvalue problem

$$
\sum_{b}\left(\begin{array}{cc}
t_{a b}+\Lambda_{a b}-\mu \delta_{a b} & \tilde{h}_{a b} \\
\tilde{h}_{a b}^{\dagger} & -t_{a b}-\Lambda_{a b}+\mu \delta_{a b}
\end{array}\right)\binom{U_{b}^{k}}{V_{b}^{k}}=\omega_{k}\binom{U_{a}^{k}}{V_{a}^{k}}
$$

with the normalization condition

$$
\sum_{a}\left|U_{a}^{k}\right|^{2}+\sum_{a}\left|V_{a}^{k}\right|^{2}=1
$$

2nd order diagrams

粦 Energy-dependent self-energy
$010+0=1010$
$\Sigma_{a b}^{11(2)}(\omega)=\sum_{k_{1} k_{2} k_{3}}\left\{\frac{\mathcal{C}_{a}^{k_{a}, k_{2} k_{3} k_{3}} C_{b}^{k_{b} k_{2} k_{3} \dagger}}{\omega-E_{k_{1} k_{2} k_{3}}+i \eta}+\frac{\mathcal{D}_{a}^{k_{a} k_{2} k_{3} k_{3} \dagger}}{\omega+E_{k_{1} k_{2} k_{3}}^{k_{1} k_{2} k_{3} k_{3}}+i \eta}\right\}$

$$
\begin{aligned}
& \mathcal{C}_{a}^{k_{1} k_{2} k_{3}} \equiv \frac{1}{\sqrt{6}} \sum_{\{1,2,3\}} \sum_{i j k} \bar{\sigma}_{a k i j} \mathcal{V}_{i}^{k_{1} k_{1}^{-k_{j}^{2}} \nu_{k}^{k_{3}^{3}}} \\
& \mathcal{D}_{a}^{k_{1} k_{2} k_{3}} \equiv \frac{1}{\sqrt{6}} \sum_{\{1,2,3\}} \sum_{i j k} \bar{V}_{\text {akij }} \nu_{i}^{k_{1} v_{j}^{k_{j}^{2}} \bar{u}_{k}^{k_{3}}}
\end{aligned}
$$

絭 Recast known energy dependence into new quantities

$$
\begin{aligned}
&\left(\omega_{k}-E_{k_{1} k_{2} k_{3}}\right) \mathcal{W}_{k}^{k_{1} k_{2} k_{3}} \equiv \sum_{a}\left[\mathcal{C}_{a}^{k_{1} k_{2} k_{3} \dagger} \mathcal{U}_{a}^{k}-\mathcal{D}_{a}^{k_{1} k_{2} k_{3}} \mathcal{V}_{a}^{k}\right] \\
&\left(\omega_{k}+E_{k_{1} k_{2} k_{3}}\right) \mathcal{Z}_{k}^{k_{1} k_{2} k_{3}} \equiv \sum_{a}\left[-\mathcal{D}_{a}^{k_{1} k_{2} k_{3}} \mathcal{U}_{a}^{k}+\mathcal{C}_{a}^{k_{1} k_{2} k_{3} \dagger} \mathcal{V}_{a}^{k}\right]
\end{aligned}
$$

Gorkov equations (3)

$$
\begin{gathered}
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}} \\
\text { Expand in terms } \square \text { of } W \text { and } Z
\end{gathered}
$$

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

Energy independent eigenvalue problem
with the normalization condition $\quad \sum_{a}\left[\left|\mathcal{U}_{a}^{k}\right|^{2}+\left|\mathcal{V}_{a}^{k}\right|^{2}\right]+\sum_{k_{1} k_{2} k_{3}}\left[\left|\mathcal{W}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}+\left|\mathcal{Z}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}\right]=1$

Results

Results

* Calculations of ${ }^{40-48} \mathrm{Ca}$ isotopes
\rightarrow Spherical harmonic oscillator basis
\rightarrow V Iow-k from Ch-EFT potential with cutoff $\Lambda=2.1 \& 2.5 \mathrm{fm}^{-1}$
$\rightarrow \rightarrow$ NN interaction only

粦 CEA-CCRT massively-parallel high-performance cluster
\rightarrow ~ 58000 cores, ~ 300 Tflops total
" \rightarrow Parallelized code

Binding energies

类 Systematic along isotopic/isotonic chains become available

$" \rightarrow$ Correlation energy "consistent" with CCSD (quantitative analysis in progress)
\rightarrow Overbinding with A: traces need for (at least) NNN forces
" $\quad \rightarrow$ Second-order SCGF qualitatively different from second-order MBPT

Binding energies

类 Systematic along isotopic/isotonic chains become available

$" \rightarrow$ Correlation energy "consistent" with CCSD (quantitative analysis in progress)
\rightarrow Overbinding with A: traces need for (at least) NNN forces
" \rightarrow Second-order SCGF qualitatively different from second-order MBPT

Spectral function

Shell structure evolution

䡒 ESPE collect fragmentation of "single-particle" strengths from both $\mathrm{N} \pm 1$

$$
\epsilon_{a}=\sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+}+\sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}=t_{a a}+\sum_{c d} \bar{V}_{a c a d} \rho_{d c}
$$

[Baranger 1970]

$\omega \rightarrow$ Correlations shift ESPE up in a non-uniform manner

Shell structure evolution

䡒 ESPE collect fragmentation of "single-particle" strengths from both $\mathrm{N} \pm 1$

$$
\epsilon_{a}=\sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+}+\sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}=t_{a a}+\sum_{c d} \bar{V}_{a c a d} \rho_{d c}
$$

[Baranger 1970]

\rightarrow Correlations shift ESPE up in a non-uniform manner

Next

粦 Systematic comparison with CC in doubly magic ± 1 and ± 2 nuclei
［in collaboration with G．Hagen］
粦 Implementation of NNN forces

粦 Formulation of particle－number restored Gorkov theory

